已知:如圖,在?ABCD中,E、F分別是邊AD、BC的中點(diǎn),AC分別交BE、DF于C、H.請(qǐng)判斷下列結(jié)論:(1)BE=DF;(2)AG=GH=HC;(3)EG=數(shù)學(xué)公式BG;(4)S△ABE=3S△AGE.其中正確的結(jié)論有


  1. A.
    1個(gè)
  2. B.
    2個(gè)
  3. C.
    3個(gè)
  4. D.
    4個(gè)
D
分析:(1)根據(jù)BF∥DE,BF=DE可證BEDF為平行四邊形;(2)根據(jù)平行線等分線段定理判斷;(3)根據(jù)△AGE∽△CGB可得;
(4)由(3)可得△ABG的面積=△AGE面積×2.
解答:(1)∵?ABCD,∴AD=BC,AD∥BC.
E、F分別是邊AD、BC的中點(diǎn),
∴BF∥DE,BF=DE.
∴BEDF為平行四邊形,BE=DF.故正確;
(2)根據(jù)平行線等分線段定理可得AG=GH=HC.故正確;
(3)∵AD∥BC,AE=AD=BC,
∴△AGE∽△CGB,AE:BC=EG:BG=1:2,
∴EG=BG.故正確.
(4)∵BG=2EG,∴△ABG的面積=△AGE面積×2,
∴S△ABE=3S△AGE.故正確.
故選D.
點(diǎn)評(píng):此題考查了平行四邊形的判定及性質(zhì)、相似三角形的判定及性質(zhì)等知識(shí)點(diǎn),難度中等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

34、已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•啟東市一模)已知,如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.
(1)以AB邊上一點(diǎn)O為圓心,過(guò)A,D兩點(diǎn)作⊙O(不寫(xiě)作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若(1)中的⊙O與AB邊的另一個(gè)交點(diǎn)為E,半徑為2,AB=6,求線段AD、AE與劣弧DE所圍成的圖形面積.(結(jié)果保留根號(hào)和π)《根據(jù)2011江蘇揚(yáng)州市中考試題改編》

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DE與AC、AB分別交于點(diǎn)D和點(diǎn)E.
(1)作出邊AC的垂直平分線DE;
(2)當(dāng)AE=BC時(shí),求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,在AB、AC上各取一點(diǎn)E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:專項(xiàng)題 題型:證明題

已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連結(jié)BD,CE,BD與CE交于O,連結(jié)AO,
           ∠1=∠2;
求證:∠B=∠C

查看答案和解析>>

同步練習(xí)冊(cè)答案