【題目】如圖,在△ABC中,AE⊥BC于點(diǎn)E,∠B=22.5°,AB的垂直平分線DN交BC于點(diǎn)D,交AB于點(diǎn)N,DF⊥AC于點(diǎn)F,交AE于點(diǎn)M.求證:
(1)AE=DE;
(2)EM=EC.
【答案】(1)見解析;(2)見解析.
【解析】
(1)根據(jù)線段垂直平分線的性質(zhì)得到DA=DB,得到∠DAB=∠B=22.5°,根據(jù)三角形的外角性質(zhì)得到∠ADE=∠DAB+∠B=45°,根據(jù)等腰三角形的性質(zhì)證明;
(2)證明△MDE≌△CAE,根據(jù)全等三角形的性質(zhì)證明結(jié)論.
證明:(1)∵DN是AB的垂直平分線,
∴DA=DB,
∴∠DAB=∠B=22.5°,
∴∠ADE=∠DAB+∠B=45°,
∵AE⊥BC,
∴∠AED=90°,
∴∠DAE=∠ADE=45°,
∴AE=DE;
(2)∵DF⊥AC,AE⊥BC,
∴∠MDE=∠CAE,
在△MDE和△CAE中,
,
∴△MDE≌△CAE(ASA),
∴EM=EC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某港口在某天從0時(shí)到12時(shí)的水位情況變化曲線.
(1)在這一問題中,自變量是什么?
(2)大約在什么時(shí)間水位最深,最深是多少?
(3)大約在什么時(shí)間段水位是隨著時(shí)間推移不斷上漲的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,分別給出以下條件:①AB∥CD;②AB=CD;③AD∥BC;④AD=BC;⑤∠A=∠C.則下列條件組合中,不能判定四邊形ABCD為平行四邊形的是( )
A. ①④B. ①③C. ①②D. ①⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)ABC的頂點(diǎn)A,C的坐標(biāo)分別為(﹣4,5),(﹣1,3).
(1)寫出點(diǎn)B的坐標(biāo),B ;
(2)將△ABC平移得△A′B′C′,點(diǎn)A、B、C的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A′、B′、C′,已知A′(2,3),寫出點(diǎn)B′和C′的坐標(biāo):B′ 和C′ ;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某園林的門票每張10元,一次性使用.考慮到人們的不同需求,也為了吸引更多的游客,該園林除保留原來的售票方法外,還推出了一種“購買個(gè)人年票”的售票方法(個(gè)人年票從購買日起,可供持票者使用一年).年票分A、B、C三類,A類年票每張120元,持票者進(jìn)人園林時(shí),無需再購買門票;B類年票每張60元,持票者進(jìn)入該園林時(shí),需再購買門票,每次2元;C類年票每張40元,持票者進(jìn)入該園林時(shí),需再購買門票,每次3元.
(1)如果你只選擇一種購買門票的方式,并且你計(jì)劃在一年中用80元花在該園林的門票上,試通過計(jì)算,找出可使進(jìn)入該園林的次數(shù)最多的購票方式.最多幾次?
(2)求一年中進(jìn)入該園林超過多少次時(shí),購買A類年票比較合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人分別騎自行車和摩托車沿相同路線由A地到相距80千米的B地,行駛過程中的函數(shù)圖象如圖所示,請根據(jù)圖象回答下列問題:
(1)甲先出發(fā)______小時(shí)后,乙才出發(fā);大約在甲出發(fā)______小時(shí)后,兩人相遇,這時(shí)他們離A地_______千米.
(2)兩人的行駛速度分別是多少?
(3)分別寫出表示甲、乙的路程y(千米)與時(shí)間x(小時(shí))之間的函數(shù)表達(dá)式(不要求寫出自變量的取值范圍).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,AE平分∠BAD,分別交BC、BD于點(diǎn)E、P,連接OE,∠ADC=60°,AB=BC=1,則下列結(jié)論:
①∠CAD=30°②BD=③S平行四邊形ABCD=ABAC④OE=AD⑤S△APO=,正確的個(gè)數(shù)是( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班級(jí)準(zhǔn)備購買一些獎(jiǎng)品獎(jiǎng)勵(lì)春季運(yùn)動(dòng)會(huì)表現(xiàn)突出的同學(xué),獎(jiǎng)品分為甲、乙兩種,已知,購買一個(gè)甲獎(jiǎng)品比一個(gè)乙獎(jiǎng)品多用20元,若用400元購買甲獎(jiǎng)品的個(gè)數(shù)是用160元購買乙獎(jiǎng)品個(gè)數(shù)的一半.
(1)求購買一個(gè)甲獎(jiǎng)品和一個(gè)乙獎(jiǎng)品各需多少元?
(2)經(jīng)商談,商店決定給予該班級(jí)每購買甲獎(jiǎng)品3個(gè)就贈(zèng)送一個(gè)乙獎(jiǎng)品的優(yōu)惠,如果該班級(jí)需要乙獎(jiǎng)品的個(gè)數(shù)是甲獎(jiǎng)品的2倍還多8個(gè),且該班級(jí)購買兩種獎(jiǎng)項(xiàng)的總費(fèi)用不超過640元,那么該班級(jí)最多可購買多少個(gè)甲獎(jiǎng)品?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市居民使用自來水按月收費(fèi),標(biāo)準(zhǔn)如下:
①若每戶月用水不超過,按元/收費(fèi);
②若超過,但不超過,則超過的部分按元/收費(fèi),未超過部分按①標(biāo)準(zhǔn)收費(fèi);
③若超過,超過的部分按元/收費(fèi),未超過部分按②標(biāo)準(zhǔn)收費(fèi);
(1)若用水,應(yīng)交水費(fèi)______元;(用含的式子表示)
(2)小明家上個(gè)月用水,交水費(fèi)元,求的值;
(3)在(2)的條件下,小明家七、八兩個(gè)月共交水費(fèi)元,七月份用水超過,但不足,八月份用水超過,當(dāng)均為整數(shù)時(shí),求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com