【題目】閱讀材料:若m22mn+2n210n+250,求m,n的值.

解:∵m22mn+2n210n+250,

∴(m22mn+n2+n210n+25)=0

∴(mn2+n520,

mn0n50

n5,m5

根據(jù)你的觀察,探究下面的問題:

1)已知:x2+2xy+2y2+4y+40,求xy的值;

2)已知:△ABC的三邊長a,bc都是正整數(shù),且滿足:a2+b216a12b+1000,求△ABC的周長的最大值;

3)已知:△ABC的三邊長是a,b,c,且滿足:a2+2b2+c22ba+c)=0,試判斷△ABC是什么形狀的三角形并說明理由.

【答案】(1);(2)△ABC周長的最大值為27;(3)△ABC是等邊三角形.

【解析】

(1)利用完全平方公式以及非負數(shù)的性質求解即可.

(2)利用完全平方公式以及非負數(shù)的性質求解即可.

(3)利用完全平方公式以及非負數(shù)的性質求解即可.

解:(1)∵x2+2xy+2y2+4y+40,

∴(x2+2xy+y2+y2+4y+4)=0

∴(x+y2+y+220

x+y0,y+20

x2,y=﹣2,

2)∵a2+b216a12b+1000

∴(a216a+64+b212b+36)=0,

∴(a82+b620,

a8,b6

由三角形的三邊關系可知2c14c為正整數(shù)

c的最大值是13

∴△ABC周長的最大值為27

3)結論:△ABC是等邊三角形.

理由:∵a2+2b2+c22ba+c)=0

∴(a22ab+b2+b22bc+c2)=0,

∴(ab2+bc20,

ab,bc

abc,

∴△ABC是等邊三角形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車從A地出發(fā),勻速駛向B地.甲車以80km/h的速度行駛1h后,乙車才沿相同路線行駛.乙車先到達B地并停留1h后,再以原速按原路返回,直至與甲車相遇.在此過程中,兩車之間的距離y(km)與乙車行駛時間x(h)之間的函數(shù)關系如圖所示.下列說法:乙車的速度是120km/h;②m=160;③H的坐標是(7,80);④n=7.5.

其中說法正確的是(  )

A. ①②③ B. ①②④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線m∥n,點C是直線m上一點,點D是直線n上一點,CD與直線m、n不垂直,點P為線段CD的中點.

(1)操作發(fā)現(xiàn):直線l⊥m,分別交m、n于點A、B,當點B與點D重合時(如圖1),連結PA,請直接寫出線段PAPB的數(shù)量關系:   

(2)猜想證明:在圖1的情況下,把直線l向右平移到如圖2的位置,試問(1)中的PAPB

的關系式是否仍然成立?若成立,請給予證明;若不成立,請說明理由.

(3)延伸探究:在圖2的情況下,把直線l繞點A旋轉,使得∠APB=90°(如圖3),若兩平行線m、n之間的距離為2k,求證:PAPB=kAB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在慈善一日捐活動中,學校團總支為了了解本校學生的捐款情況,隨機抽取了50名學生的捐款數(shù)進行了統(tǒng)計,并繪制成下面的統(tǒng)計圖.

1)這50名同學捐款的眾數(shù)為     元,中位數(shù)為     元;

2)該校共有600名學生參與捐款,請估計該校學生的捐款總數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角三角形ABC中,

(1)過點AAB的垂線與∠B的平分線相交于點D

(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);

(2)若∠A=30°,AB=2,則△ABD的面積為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題中,是假命題的是( )

A. 在△ABC中,若∠A:∠B:∠C=1:2:3,則△ABC是直角三角形

B. 在△ABC中,若a2=(b+c) (b-c),則△ABC是直角三角形

C. 在△ABC中,若∠B=∠C=∠A,則△ABC是直角三角形

D. 在△ABC中,若a:b:c=5:4:3,則△ABC是直角三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把一個轉盤分成四等份,依次標上數(shù)字1、2、34,若連續(xù)自由轉動轉盤二次,指針指向的數(shù)字分別記作作為點的橫、縱坐標.

1】求點Aab)的個數(shù);

2】求點Aa,b)在函數(shù)的圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,E為對角線AC上一點,CE=CD,連接EB、ED,延長BEAD于點F.求證:DF2=EFBF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中直線y=x﹣2與y軸相交于點A,與反比例函數(shù)在第一象限內的圖象相交于點B(m,2).

(1)求反比例函數(shù)的關系式;

(2)將直線y=x﹣2向上平移后與反比例函數(shù)圖象在第一象限內交于點C,且ABC的面積為18,求平移后的直線的函數(shù)關系式.

查看答案和解析>>

同步練習冊答案