【題目】經(jīng)銷商購進某種商品,當購進量在20千克~50千克之間(20千克和50千克)時,每千克進價是5元;當購進量超過50千克時,每千克進價是4元.此種商品的日銷售量y(千克)受銷售價x(/千克)的影響較大,該經(jīng)銷商試銷一周后獲得如下數(shù)據(jù):

x(/千克)

5

5.5

6

6.5

7

y(千克)

90

75

60

45

30

解答下列問題:

(1)求出y關于x的一次函數(shù)表達式:

(2)若每天購進的商品能夠全部銷售完,且當日銷售價不變,日銷售利潤為w元,那么銷售價定為多少時,該經(jīng)銷商銷售此種商品的當日利潤最大?最大利潤為多少元?此時購進量應為多少千克?(注:當日利潤=(銷售價-進貨價日銷售量)

【答案】1y=-30x+2402)當銷售價為6元時,經(jīng)銷商銷售此種商品的當日利潤最大,最大利潤為120元,此時購進量應為60千克

【解析】

1)根據(jù)待定系數(shù)法即可求解y關于x的一次函數(shù)表達式;

2)先根據(jù)題意列出w關于x的二次函數(shù),求出其最值,故可求解.

1)設y關于x的一次函數(shù)表達式為y=kx+bk0

把(5,90),(6,60)代入得

解得

y關于x的一次函數(shù)表達式為y=-30x+240;

2)當購進量在20千克~50千克之間(20千克和50千克)時,

w1=x-5(-30x+240)=-30x-6.52+67.5,

-300∴x=6.5時,y=45kg, 日銷售利潤為67.5元;

當購進量超過50千克時,

w2=x-4(-30x+240)=-30x-62+120,

-300∴x=6時,y=60kg, 日銷售利潤為120元;

答:當銷售價為6元時,經(jīng)銷商銷售此種商品的當日利潤最大,最大利潤為120元,此時購進量應為60千克.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】我國魏晉時期的數(shù)學家劉徽(263年左右)首創(chuàng)割圓術,所謂割圓術就是利用圓內(nèi)接正多邊形無限逼近圓來確定圓周率,劉徽計算出圓周率.劉微從正六邊形開始分割圓,每次邊數(shù)成倍增加,依次可得圓內(nèi)接正十二邊形,圓內(nèi)接正二十四邊形,,割得越細,正多邊形就越接近圓.設圓的半徑為,圓內(nèi)接正六邊形的周長,計算;圓內(nèi)接正十二邊形的周長,計算;那么分割到圓內(nèi)接正二十四邊形后,通過計算可以得到圓周率__________.(參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,四邊形ABCD是正方形,∠MAN90°,將∠MAN繞頂點A旋轉(zhuǎn),旋轉(zhuǎn)角為∠DAM<∠DAM45°),AMCD于點E,∠MAN的平分線與CB交于點G

1)證明:如圖1,連接GE.求證:GEDE+BG;

2)探究:如圖2,設ANCB的延長線于點F,直線EF分別交AG,AB于點P,H.探究GHAE的位置關系,并證明你的結(jié)論;

3)應用:在圖2中,若正方形的邊長為6,BG2,求GH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】橫臥于清波之上的黃石大橋與已經(jīng)貫通的五峰山隧道將成為恩施城區(qū)跨越東西方向的最大直線通道,它把六角亭老城區(qū)與知名景點女兒城連為一體,緩解了恩施城區(qū)交通擁堵的現(xiàn)狀.如圖,某數(shù)學興趣小組利用無人機在五峰山隧道正上空點P處測得黃石大橋西端點A的俯角為30°,東端點B(隧道西進口)的俯角為45°,隧道東出口C的俯角為22°,已知黃石大橋AB全長175米,隧道BC的長約多少米(計算結(jié)果精確到1米)?(參考數(shù)據(jù):sin22°≈0.37cos22°≈0.93,tan22°≈0.401.41.7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察以下等式:

1個等式:; 2個等式:

3個等式:;第4個等式:;…

按照以上規(guī)律,解決下列問題:

(1)寫出第5個等式:_______________

(2)寫出你猜想的第n個等式:________________________(用含n的等式表示),并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知反比例函數(shù)y的圖象經(jīng)過點A(4,m),ABx軸,且△AOB的面積為2.

(1)求km的值;

(2)若點C(x,y)也在反比例函數(shù)y的圖象上,當-3≤x≤-1時,求函數(shù)值y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸交于點,頂點坐標且開口向下,則下列結(jié)論:①拋物線經(jīng)過點;②;③關于的方程有兩個不相等的實數(shù)根;④對于任意實數(shù)總成立。其中結(jié)論正確的個數(shù)為( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知二次函數(shù)yax2+bx+c(a≠0)的圖象與x軸交于A(1,0)B(3,0)兩點,與y軸交于點C(0,﹣2),頂點為D,對稱軸交x軸于點E

(1)求該二次函數(shù)的解析式;

(2)M為該拋物線對稱軸左側(cè)上的一點,過點M作直線MNx軸,交該拋物線于另一點N.是否存在點M,使四邊形DMEN是菱形?若存在,請求出點M的坐標;若不存在,請說明理由;

(3)連接CE(如圖2),設點P是位于對稱軸右側(cè)該拋物線上一點,過點PPQx軸,垂足為Q.連接PE,請求出當△PQE與△COE相似時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC中,ABC=90°

(1)尺規(guī)作圖:按下列要求完成作圖(保留作圖痕跡,請標明字母)

①作線段AC的垂直平分線l,交AC于點O;

②連接BO并延長,在BO的延長線上截取OD,使得OD=OB;

③連接DA、DC

(2)判斷四邊形ABCD的形狀,并說明理由.

查看答案和解析>>

同步練習冊答案