(2001•武漢)已知:圓內(nèi)接四邊形ABCD中,對(duì)角線AC⊥BD,AB>CD.若CD=4,則AB的弦心距為( )
A.
B.2
C.
D.
【答案】分析:設(shè)AC和BD的交點(diǎn)是O.過點(diǎn)O作GH⊥CD于G,交AB于H.
根據(jù)等角的余角相等以及圓周角定理可以證明點(diǎn)H是AB的中點(diǎn).
再過點(diǎn)O作MN⊥AB于M,交CD于點(diǎn)N.同樣可以證明N是CD的中點(diǎn).
設(shè)該圓的圓心是O′,連接O′N、O′H.根據(jù)垂徑定理的推論,得O′N⊥CD,O′H⊥AB.
則O′N∥GH,O′H∥MN,則四邊形O′NOH是平行四邊形,則O′H=ON=CD=2.
解答:解:如圖,設(shè)AC與BD的交點(diǎn)為O,過點(diǎn)O作GH⊥CD于G,交AB于H;作MN⊥AB于M,交CD于點(diǎn)N.
在Rt△COD中,∠COD=90°,OG⊥CD;
∴∠DOG=∠DCO;
∵∠GOD=∠BOH,∠DCO=∠ABO,
∴∠ABO=∠BOH,即BH=OH,同理可證,AH=OH;
即H是Rt△AOB斜邊AB上的中點(diǎn).
同理可證得,M是Rt△COD斜邊CD上的中點(diǎn).
設(shè)圓心為O′,連接O′M,O′H;則O′M⊥CD,O′H⊥AB;
∵M(jìn)N⊥AB,GH⊥CD;
∴O′H∥MN,OM∥GH;即四邊形O′HOM是平行四邊形;
因此OM=O′H.由于OM是Rt△OCD斜邊CD上的中線,所以O(shè)M=O′H=CD=2.
故選B.
點(diǎn)評(píng):此題綜合運(yùn)用了等角的余角相等以及等弧所對(duì)的圓周角相等,發(fā)現(xiàn)垂直于一邊的直線,和另一邊的交點(diǎn)正好是它的中點(diǎn).再根據(jù)垂徑定理的推論,得到垂直,發(fā)現(xiàn)平行四邊形.根據(jù)平行四邊形的對(duì)邊相等,即可求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2001年湖北省武漢市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2001•武漢)已知:如圖,在直角坐標(biāo)系xoy中,以x軸的負(fù)半軸上一點(diǎn)H為圓心作⊙O與x軸交于A、B兩點(diǎn),與y軸交于C、D兩點(diǎn).以C為圓心、OC為半徑作⊙C與⊙H交于F、F兩點(diǎn),與y軸交于O、Q兩點(diǎn).直線EF與AC、BC、y軸分別于M、N、G三點(diǎn).直線經(jīng)過A、C兩點(diǎn).
(1)求tan∠CNM的值;
(2)連接OM、ON,問:四邊形CMON是怎樣的四邊形?請(qǐng)說明理由.
(3)如圖,R是⊙C中弧EQ上的一動(dòng)點(diǎn)(不與E點(diǎn)重合),過R作⊙C的切線RT,若RT與⊙H相交于S、T不同兩點(diǎn).問:CS•CT的值是否發(fā)生變化?若不變,請(qǐng)說明理由,并求其值;若變化,請(qǐng)求其值的變化范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年湖北省武漢市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2001•武漢)已知:如圖,⊙O1和⊙O2相交于A、B兩點(diǎn),過B點(diǎn)作⊙O1的切線交⊙O2于D點(diǎn),連接DA并延長⊙O1相交于C點(diǎn),連接BC,過A點(diǎn)作AE∥BC與⊙O相交于E點(diǎn),與BD相交于F點(diǎn).
(1)求證:EF•BC=DE•AC;
(2)若AD=3,AC=1,,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年湖北省武漢市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2001•武漢)已知,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年湖北省武漢市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2001•武漢)已知:⊙O的內(nèi)接四邊形ABCD中,AB是⊙O的直徑,∠BCD=120°.過D點(diǎn)的切線PD與BA的延長線交于P點(diǎn),則∠ADP的度數(shù)是( )

A.15°
B.30°
C.45°
D.60°

查看答案和解析>>

同步練習(xí)冊(cè)答案