已知x6+4x5+2x4-6x3-3x2+2x+l其中f(x)是x的多項式,則f(x)=
±(x3+2x2-x-1)
±(x3+2x2-x-1)
分析:由于x6+4x5+2x4-6x3-3x2+2x+l=[(x3+2x22-(2x4+6x3+4x2)+(x+1)2]=[(x3+2x22-2(x3+2x2)(x+1)+(x+1)2]=[(x3+2x2-x-1)2.從而得出f(x)的值.
解答:解:∵[f(x)]2=x6+4x5+2x4-6x3-3x2+2x+l
=[(x3+2x22-(2x4+6x3+4x2)+(x+1)2]
=[(x3+2x22-2(x3+2x2)(x+1)+(x+1)2]
=[(x3+2x2-x-1)2
∴f(x)=±(x3+2x2-x-1).
故答案為:±(x3+2x2-x-1).
點評:本題考查了因式分解的應用,解題的關鍵是將x6+4x5+2x4-6x3-3x2+2x+l分解為[(x3+2x2-x-1)2
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:填空題

已知x6+4x5+2x4-6x3-3x2+2x+l其中f(x)是x的多項式,則f(x)=________.

查看答案和解析>>

同步練習冊答案