如圖所示,在平面直角坐標(biāo)中,拋物線的頂點(diǎn)P到x軸的距離是4,拋物線與x軸相交于O、M兩點(diǎn),OM=4;矩形ABCD的邊BC在線段OM上,點(diǎn)A、D在拋物線上.
(1)請(qǐng)寫(xiě)出P、M兩點(diǎn)坐標(biāo),并求這條拋物線的解析式;
(2)設(shè)矩形ABCD的周長(zhǎng)為l,求l的最大值.
(1)根據(jù)題意,得P(2,4),M(4,0),
設(shè)拋物線的解析式為:y=a(x-2)2+4,
∵函數(shù)經(jīng)過(guò)點(diǎn)M(4,0),則4a+4=0,
∴a=-1,
故可得函數(shù)解析式為:y=-(x-2)2+4=4x-x2;

(2)設(shè)C點(diǎn)坐標(biāo)為(x,0),
則B(4-x,0),D(x,4x-x2),A(4-x,4x-x2),
故可得:l=2(BC+CD)=2[(4-2x)+(4x-x2)]=2(-x2+2x+4)=-2(x-1)2+10,
即當(dāng)x=1時(shí),l有最大值,即l最大值為10;
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,二次函數(shù)y=-x2+2x+m的圖象與x軸的一個(gè)交點(diǎn)為A(3,0),另一個(gè)交點(diǎn)為B,且與y軸交于點(diǎn)C.
(1)求m的值;
(2)求點(diǎn)B的坐標(biāo);
(3)該二次函數(shù)圖象上有一點(diǎn)D(x,y)(其中x>0,y>0)使S△ABD=S△ABC,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,臨沂三河口大橋有一段拋物線行的工橋梁,拋物線的表達(dá)式為y=ax2+bx,小強(qiáng)騎自行車從拱梁一端O沿直線勻速穿過(guò)拱梁部分的橋面OC,當(dāng)小強(qiáng)騎自行車行駛10秒時(shí)和20秒時(shí)拱梁的高度相同,則小強(qiáng)騎自行車通過(guò)拱梁部分的橋面OC共需______秒.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線的頂點(diǎn)為A(2,1),且經(jīng)過(guò)原點(diǎn)O,與x軸的另一個(gè)交點(diǎn)為B.
(1)求拋物線的解析式;
(2)在拋物線上求點(diǎn)M,使△MOB的面積是△AOB面積的3倍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖是某河上一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀,拋物線兩端點(diǎn)與水面的距離都是1m,拱橋的跨度為10m,橋洞與水面的最大距離是5m,橋洞兩側(cè)壁上各有一盞距離水面4m的景觀燈.若把拱橋的截面圖放在平面直角坐標(biāo)系中,則兩盞景觀燈之間的水平距離是( 。
A.3mB.4mC.5mD.6m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線經(jīng)過(guò)原點(diǎn)O和x軸上另一點(diǎn)A,它的對(duì)稱軸x=2與x軸交于點(diǎn)C,直線y=-2x-1經(jīng)過(guò)拋物線上一點(diǎn)B(-2,m),且與y軸、直線x=2分別交于點(diǎn)D、E.
(1)求m的值及該拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)求證:①CB=CE;②D是BE的中點(diǎn);
(3)若P(x,y)是該拋物線上的一個(gè)動(dòng)點(diǎn),是否存在這樣的點(diǎn)P,使得PB=PE?若存在,試求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,等腰梯形ABCD的邊BC在x軸上,點(diǎn)A在y軸的正方向上,A(0,6),D(4,6),且AB=2
10

(1)求點(diǎn)B的坐標(biāo);
(2)求經(jīng)過(guò)B、D兩點(diǎn)的拋物線y=ax2+bx+6的解析式;
(3)在(2)中所求的拋物線上是否存在一點(diǎn)P,使得S△PBC=
1
2
S梯形ABCD
?若存在,請(qǐng)求出該點(diǎn)坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知二次函數(shù)y=x2-2x-1的圖象的頂點(diǎn)為A.二次函數(shù)y=ax2+bx的圖象與x軸交于原點(diǎn)O及另一點(diǎn)C,它的頂點(diǎn)B在函數(shù)y=x2-2x-1的圖象的對(duì)稱軸上.
(1)求點(diǎn)A與點(diǎn)C的坐標(biāo);
(2)當(dāng)四邊形AOBC為菱形時(shí),求函數(shù)y=ax2+bx的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

有一條長(zhǎng)7.2米的木料,做成如圖所示的“日”字形的窗框,問(wèn)窗的高和寬各取多少米時(shí),這個(gè)窗的面積最大?(不考慮木料加工時(shí)損耗和中間木框所占的面積)

查看答案和解析>>

同步練習(xí)冊(cè)答案