【題目】如圖,在中,,點分別在邊上,且,.
(1)求證:是等腰三角形.
(2)若為等邊三角形,求的度數(shù).
【答案】(1)證明見解析;(2)∠A=60°.
【解析】
(1)證明△DBE≌△CEF得到DE=EF,即可得到結(jié)論;
(2)由已知得到∠DEF=60°,根據(jù)外角的性質(zhì)及△DBE≌△CEF得到∠DEF+∠CEF=∠B+∠BDE,求得∠B =∠DEF=60°,再根據(jù)AB=AC即可求出的度數(shù).
(1)證明:∵AB=AC,∴∠B=∠C.
在△DBE 和△CEF 中,
∴△DBE≌△ECF.
∴DE=EF.
∴△DEF 是等腰三角形.
(2)∵△DEF為等邊三角形,
∴∠DEF=60°.
∵△DBE≌△CEF,∴∠BDE=∠CEF.
∵∠DEF+∠CEF=∠B+∠BDE,∴∠B =∠DEF=60°.
∴∠C=∠B=60°.
∴∠A=180°-∠B-∠C=60°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在等腰△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE=120°.
(1)求證:△ABD≌△ACE;
(2)把△ADE繞點A逆時針方向旋轉(zhuǎn)到圖②的位置,連接CD,點M、P、N分別為DE、DC、BC的中點,連接MN、PN、PM,判斷△PMN的形狀,并說明理由;
(3)在(2)中,把△ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=6,請分別求出△PMN周長的最小值與最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AC的垂直平分線分別與AC、BC及AB的延長線相交于點D,E,F(xiàn),且BF=BC,⊙O是△BEF的外接圓,∠EBF的平分線交EF于點G,交⊙O于點H,連接BD、FH.
(1)求證:△HGF∽△HFB;
(2)求證:BD=EF;
(3)連接HE,若AB=2,求△HEF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校計劃組織師生共310人參加一次野外研學活動,如果租用6輛大客車和5輛小客車恰好全部坐滿.已知每輛大客車的乘客座位數(shù)比小客車多15個.
(1)求每輛大客車和每輛小客車的乘客座位數(shù);
(2)由于最后參加活動的人數(shù)增加了20人,學校決定調(diào)整租車方案,在保持租用車輛總數(shù)不變的情況下,為將所有參加活動的師生裝載完成,求租用小客車數(shù)量的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“五一”期間小明和小麗相約到蘇州樂園游玩,小麗乘私家車從上海出發(fā)30分鐘后,小明乘坐火車從上海出發(fā),先到蘇州北站,然后再乘出租車去游樂園(換乘時間忽略不計),兩人恰好同時到達蘇州樂園,他們離上海的距離y(千米)與乘車時間t(小時)的關(guān)系如圖所示,請結(jié)合圖象信息解決下面問題:
(1)本次火車的平均速度_________千米/小時?
(2)當小明到達蘇州北站時,小麗離蘇州樂園的距離還有多少千米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB的垂直平分線分別交AB,BC于點D,E,∠B=30°,∠BAC=80°,且BC+AC=12cm,①求∠CAE的度數(shù);②求△AEC的周長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了創(chuàng)建全國衛(wèi)生城市,某社區(qū)要清理一個衛(wèi)生死角內(nèi)的垃圾,租用甲、乙兩車運送,兩車各運12趟可完成,需支付運費4800元.已知甲、乙兩車單獨運完此堆垃圾,乙車所運趟數(shù)是甲車的2倍,且乙車每趟運費比甲車少200元.
(1)求甲、乙兩車單獨運完此堆垃圾各需運多少趟?
(2)若單獨租用一臺車,租用哪臺車合算?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A,B,C在半徑為4的⊙O上,過點C作⊙O的切線交OA的延長線于點D.
(Ⅰ)若∠ABC=29°,求∠D的大小;
(Ⅱ)若∠D=30°,∠BAO=15°,作CE⊥AB于點E,求:
①BE的長;
②四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖、圖、圖,在矩形中,是邊上的一點,以為邊作平行四邊形,使點在的對邊上,
如圖,試說明:平行四邊形的面積與矩形的面積相等;
如圖,若平行四邊形是矩形,與交于點,試說明:、、、四點在同一個圓上;
如圖,若,平行四邊形是正方形,且是的中點,交于點,連接,判斷以為直徑的圓與直線的位置關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com