如圖,已知△ABC為等腰直角三角形,D為斜邊BC的中點,經(jīng)過點A、D的⊙O與邊AB、AC、BC分別相交于點E、F、M.對于如下五個結(jié)論:①∠FMC=45°;②AE+AF=AB;③;④2BM2=BE•BA;⑤四邊形AEMF為矩形.其中正確結(jié)論的個數(shù)是( )

A.2個
B.3個
C.4個
D.5個
【答案】分析:根據(jù)等腰直角三角形的性質(zhì)和直徑所對的圓周角是90°,90°圓周角所對的弦是直徑逐項判斷后利用排除法求解.
解答:解:連接AM,根據(jù)等腰三角形的三線合一,得AD⊥BC,
再根據(jù)90°的圓周角所對的弦是直徑,得EF、AM是直徑,
根據(jù)對角線相等且互相平分的四邊形是矩形,得四邊形AEMF是矩形,
∴①根據(jù)等腰直角三角形ABC的底角是45°,易得∠FMC=45°,正確;
②根據(jù)矩形和等腰直角三角形的性質(zhì),得AE+AF=AB,正確;
③連接FD,可以證明△EDF是等腰直角三角形,則③中左右兩邊的比都是等腰直角三角形的直角邊和斜邊的比,正確;
④根據(jù)BM=BE,得左邊=4BE2,故需證明AB=4BE,根據(jù)已知條件它們之間不一定有這種關系,錯誤;
⑤正確.
所以①②③⑤共4個正確.故選C.
點評:此題注意熟練運用圓周角定理的推論發(fā)現(xiàn)矩形和等腰直角三角形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC為直角三角形,∠ACB=90°,AC=BC,點A、C在x軸上,點B坐標為(3精英家教網(wǎng),m)(m>0),線段AB與y軸相交于點D,以P(1,0)為頂點的二次函數(shù)圖象經(jīng)過點B、D.
(1)用m表示點A、D的坐標;
(2)求這個二次函數(shù)的解析式;
(3)點Q為二次函數(shù)圖象上點P至點B之間的一點,且點Q到△ABC邊BC、AC的距離相等,連接PQ、BQ,求四邊形ABQP的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC為直角三角形,∠ACB=90°,AC=BC,點A、C在x軸上,點B坐標為(3,m)(m>0),線段AB與y軸相交于點D,以P(1,0)為頂點的拋物線過點B、D.
(1)求點A的坐標(用m表示);
(2)求拋物線的解析式;
(3)設點Q為拋物線上點P至點B之間的一動點,連接PQ并延長交BC于點E,連接BQ并延長交AC于點F,試證明:FC(AC+EC)為定值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

25、如圖,已知△ABC為等邊三角形,D、F分別為BC、AB邊上的點,CD=BF,以AD為邊作等邊△ADE.
(1)△ACD和△CBF全等嗎?請說明理由;
(2)判斷四邊形CDEF的形狀,并說明理由;
(3)當點D在線段BC上移動到何處時,∠DEF=30°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC為等邊三角形,D,E,F(xiàn)分別在邊BC,CA,AB上,且△DEF也是等邊三角形,除已知相等的邊以外,請你猜想還有哪些相等線段,并證明你的猜想是正確的.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC為等邊三角形,點D.E分別在BC.AC邊上,且AE=CD,AD與BE相交于點F.
(1)求證:△ABE≌△CAD;
(2)求∠AFE的度數(shù).

查看答案和解析>>

同步練習冊答案