已知甲乙兩種食物中維生素A和B的含量及甲乙食物的成本如下表:
 


維生素A(單位/千克)
300
500
維生素B(單位/千克)
700
100
成本(元/千克)
5
4
現(xiàn)將兩種食物混合成100千克的混合食品。設(shè)混合食品中甲、乙食物含量分別為x(千克)和y(千克),如果混合食品中要求維生素A不低于40000單位,B不低于28000單位
(1)求x的取值范圍
(2)當(dāng)甲、乙各取多少千克時(shí),符合題意的混合食品成本最低?并求該最低成本價(jià)
(1)(2)當(dāng)時(shí),,則元時(shí),這時(shí)最低成本價(jià)為(元/千克)
(1)根據(jù)題意得:……………(3分)
解得,…………………………………………(2分)
(2)設(shè)混合食品的成本為W
,……………………………(2分)
的增大而增大,∴當(dāng)時(shí),,則……………(2分)
這時(shí)最低成本價(jià)為(元/千克)        (1分)
答:當(dāng)時(shí),,則元時(shí),這時(shí)最低成本價(jià)為(元/千克)
(1)根據(jù)甲、乙混合食品中要求維生素A不低于40000單位,B不低于28000單位列出不等式組解答即可;
(2)利用函數(shù)的性質(zhì),根據(jù)自變量的取值范圍,找出函數(shù)的最小值即可解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(2,3)、B(6,3),連結(jié)AB. 如果點(diǎn)P
在直線y=x-1上,且點(diǎn)P到直線AB的距離小于1,那么稱點(diǎn)P是線段AB的“鄰近點(diǎn)”.
(1)判斷點(diǎn)C(, ) 是否是線段AB的“鄰近點(diǎn)”,并說明理由;
(2)若點(diǎn)Q (m,n)是線段AB的“鄰近點(diǎn)”,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

甲、乙兩地相距300km,一輛貨車和一輛轎車先后從甲地出發(fā)向乙地.如圖,線段OA表示貨車離甲地距離y(km)與時(shí)間x(h)之間的函數(shù)關(guān)系,折線BCDE表示轎車離甲地距離y(km)與時(shí)間x(h)之間的函數(shù)關(guān)系.請(qǐng)根據(jù)圖象,解答下列問題:
(1)線段CD表示轎車在途中停留了     h;
(2)求線段DE對(duì)應(yīng)的函數(shù)解析式;
(3)求轎車從甲地出發(fā)后經(jīng)過多長(zhǎng)時(shí)間追上貨車.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知一次函數(shù)
(1)畫出該函數(shù)的圖象;
(2)根據(jù)圖象回答:當(dāng)x取何值時(shí),y>0?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

把直線y=-2x+1沿y軸向上平移2個(gè)單位,所得直線的函數(shù)關(guān)系式為_____________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

、兩座城市之間有一條高速公路,甲、乙兩輛汽車同時(shí)分別從這條路兩端的入口處駛?cè),并始終在高速公路上正常行駛.甲車駛往城,乙車駛往城,甲車在行駛過程中速度始終不變.甲車距城高速公路入口處的距離(千米)與行駛時(shí)間(時(shí))之間的關(guān)系如圖.

(1)求關(guān)于的表達(dá)式;
(2)已知乙車以60千米/時(shí)的速度勻速行駛,設(shè)行駛過程中,相遇前兩車相距的路程為(千米).請(qǐng)直接寫出關(guān)于的表達(dá)式;
(3)當(dāng)乙車按(2)中的狀態(tài)行駛與甲車相遇后,速度隨即改為(千米/時(shí))并保持勻速行駛,結(jié)果比甲車晚40分鐘到達(dá)終點(diǎn),求乙車變化后的速度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在平面直角坐標(biāo)系中,已知直線與x軸、y軸分別交于A、B兩點(diǎn),點(diǎn)C(0,n)是y軸上一點(diǎn).把坐標(biāo)平面沿直線AC折疊,使點(diǎn)B剛好落在x軸上,則點(diǎn)C的坐標(biāo)是(   )
A.(0,)                 B.(0,)              C.(0,3)             D.(0,4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知A、B兩地相距6千米,上午8∶00,甲從A地出發(fā)步行到B地;8∶20后,乙從B地出發(fā)
騎自行車到A地,甲、乙兩人離A地的距離(千米)與甲所用的時(shí)間(分)之間的關(guān)系如圖所示。   
(1) 求甲步行的速度是多少?
(2) 求甲、乙二人相遇的時(shí)刻?
(3) 求乙到達(dá)A地的時(shí)刻?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

今年我國(guó)許多地方嚴(yán)重的“旱情”,為了鼓勵(lì)居民節(jié)約用水,區(qū)政府計(jì)劃實(shí)行兩級(jí)收費(fèi)制,即每月用水量不超過14噸(含14噸)時(shí),每噸按政府補(bǔ)貼優(yōu)惠價(jià)收費(fèi);每月超過14噸時(shí),超過部分每噸按市場(chǎng)調(diào)節(jié)價(jià)收費(fèi).小英家1月份用水20噸,交水費(fèi)29元;2月份用水18噸,交水費(fèi)24元.
(1)求每噸水的政府補(bǔ)貼優(yōu)惠價(jià)和市場(chǎng)調(diào)節(jié)價(jià)分別是多少?
(2)設(shè)每月用水量為噸,應(yīng)交水費(fèi)為y元,寫出y與之間的函數(shù)關(guān)系式;
(3)小英家3月份交水費(fèi)39元,她家應(yīng)用水多少噸?

查看答案和解析>>

同步練習(xí)冊(cè)答案