如圖,△ABC中,AB=BC,AD⊥BC于點(diǎn)D,DE∥AB交AC于點(diǎn)E,過點(diǎn)C在△ABC外部作CF∥AB,AF⊥CF于點(diǎn)F.連接EF.
(1)求證:△AFC≌△ADC;
(2)判斷四邊形DCFE的形狀,并說明理由.
(1)證明詳見解析;(2)四邊形DCFE是菱形,理由詳見解析.
【解析】
試題分析:此題主要考查了全等三角形的判定與性質(zhì)以及平行四邊形和菱形的判定等知識(shí),根據(jù)已知得出DE∥FC是解題關(guān)鍵.(1)首先利用平行線的性質(zhì)得出∠FCE=∠BCA,進(jìn)而利用全等三角形的判定方法AAS得出△AFC≌△ADC;(2)利用利用(1)中得結(jié)論易得出DE=FC,DE//FC,故四邊形DCFE是平行四邊形;再由DE=DC可判定四邊形DCFE是菱形.
試題解析:
(1)證明:∵AB=BC,
∴∠BAC=∠BCA,
∵DE∥AB,CF∥AB,
∴DE∥FC,∠BAC=∠DEC,
∴∠DEC=∠BCA,∠DEC=∠FCE,
∴∠FCE=∠BCA,
在△AFC和△ADC中,
∴△AFC≌△ADC(AAS);
四邊形DCFE是菱形;理由如下:
∵∠DEC=∠BCA,DC=FC,
∴DE=DC,DE=FC,
又∵DE//FC,
∴四邊形DCFE是平行四邊形,
又∵DE=DC,
∴平行四邊形DCFE是菱形.
考點(diǎn):1、全等三角形的判定與性質(zhì);2、等腰三角形的性質(zhì);3、菱形的判定.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com