將長(zhǎng)、寬、高分別為a,b,c(a>b>c,單位:cm)的三塊相同的長(zhǎng)方體按圖所示的三種方式放入三個(gè)底面面直徑為d(d>
a2+b2
),高為h的相同圓柱形水桶中,再向三個(gè)水桶內(nèi)以相同的速度勻速注水,直至注滿(mǎn)水桶為止,水桶內(nèi)的水深y(cm)與注水時(shí)間t(s)的函數(shù)關(guān)系如圖所示,則注水速度為( 。
A.30cm2/sB.32cm2/sC.34cm2/sD.40cm2/s

設(shè)水桶底面積為s,注水速度為v,
當(dāng)水面剛剛過(guò)第二種放置的立方體上表面時(shí),把立方體如圖1放置,此時(shí)水面高于第一水面9-6=3(cm),時(shí)間差為45-21=24(s),于是得s×3=24×v,
由第三種放置得s×10-6×9×10=62×v,
解得v=30(cm2/s).
故選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

甲、乙兩人從少年宮出發(fā),沿相同的路線分別以不同的速度勻速跑向體育館,甲先跑一段路程后,乙開(kāi)始出發(fā),當(dāng)乙超出甲150米時(shí),乙停在此地等候甲,兩人相遇后乙又繼續(xù)以原來(lái)的速度跑向體育館.如圖是甲、乙兩人在跑步的全過(guò)程中經(jīng)過(guò)的路程y(米)與甲出發(fā)的時(shí)間x(秒)的函數(shù)圖象.
(1)在跑步的全過(guò)程中,甲共跑了______米,甲的速度為_(kāi)_____米/秒;
(2)乙跑步的速度是多少?乙在途中等候甲用了多長(zhǎng)時(shí)間?
(3)甲出發(fā)多長(zhǎng)時(shí)間第一次與乙相遇?此時(shí)乙跑了多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,在平常對(duì)某種藥品的需求量y1(萬(wàn)件),供應(yīng)量y2(萬(wàn)件)與價(jià)格x(元/件)分別近似滿(mǎn)足下列函數(shù)關(guān)系式:y1=-x+50,y2=2x-22.當(dāng)y1=y2時(shí),該藥品的價(jià)格稱(chēng)為穩(wěn)定價(jià)格,需求量稱(chēng)為穩(wěn)定需求量.
(1)圖象中a,b,c的值分別為:a=______,b=______,c=______.
(2)求該藥品的穩(wěn)定價(jià)格與穩(wěn)定需求量.
(3)若供應(yīng)量和需求量這兩種量之間相差3萬(wàn)件,求此時(shí)對(duì)應(yīng)的價(jià)格.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,以點(diǎn)M(0,
3
)為圓心,以2
3
長(zhǎng)為半徑作⊙M交x軸于A,B兩點(diǎn),交y軸于C,D兩點(diǎn),連接AM并延長(zhǎng)交⊙M于P點(diǎn),連接PC交x軸于E.
(1)求出CP所在直線的解析式;
(2)連接AC,請(qǐng)求△ACP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B分別在x軸、y軸上,線段OA、OB的長(zhǎng)(0A<OB)是方程組
2x=y
3x-y=6
的解,點(diǎn)C是直線y=2x與直線AB的交點(diǎn),點(diǎn)D在線段OC上,OD=2
5

(1)求直線AB的解析式及點(diǎn)C的坐標(biāo);
(2)求直線AD的解析式;
(3)P是直線AD上的點(diǎn),在平面內(nèi)是否存在點(diǎn)Q,使以0、A、P、Q為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

為了美化校園環(huán)境,爭(zhēng)創(chuàng)綠色學(xué)校,某縣教育局委托園林公司對(duì)A、B兩校進(jìn)行校園綠化.已知A校有如圖1的陰影部分空地需鋪設(shè)草坪,B校有如圖2的陰影部分空地需鋪設(shè)草坪.在甲、乙兩地分別有同種草皮3500米2和25002出售,且售價(jià)一樣.若園林公司向甲、乙兩地購(gòu)買(mǎi)草皮,其路程和運(yùn)費(fèi)單價(jià)表如下:
求:(1)分別求出圖1、圖2的陰影部分面積;
(2)請(qǐng)你給出一種草皮運(yùn)送方案,并求出總運(yùn)費(fèi);
(3)請(qǐng)?jiān)O(shè)計(jì)總運(yùn)費(fèi)最省的草皮運(yùn)送方案,并說(shuō)明理由.表如下:
 A校B校 
 路程(千米)運(yùn)費(fèi)單價(jià)(元) 路程(千米) 運(yùn)費(fèi)單價(jià)(元)  
 甲地          20          0.15          10            0.15
 乙地          15          0.20          20            0.20
(注:運(yùn)費(fèi)單價(jià)表示每平方米草皮運(yùn)送1千米所需的人民幣.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

小明在整個(gè)上學(xué)途中,他出發(fā)后t分鐘時(shí),他所在的位置與家的距離為s千米,且s與t之間的函數(shù)關(guān)系的圖象如圖中的折線段OA-OB所示.則折線段OA-AB所對(duì)應(yīng)的函數(shù)關(guān)系式為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

將圖所示的長(zhǎng)方體石塊(a>b>c)放入一圓柱形水槽內(nèi),并向水槽內(nèi)勻速注水,速度為vcm3/s,直至注滿(mǎn)水槽為止.石塊可以用三種不同的方式完全放入水槽內(nèi),如圖1~圖3所示.在這三種情況下,水槽內(nèi)的水深hcm與注水時(shí)間ts的函數(shù)關(guān)系如圖4~圖6所示.根據(jù)圖象完成下列問(wèn)題:
(1)請(qǐng)分別將三種放置方式的示意圖和與之相對(duì)應(yīng)的函數(shù)關(guān)系圖象用線連接起來(lái);
(2)水槽的高=______cm;石塊的長(zhǎng)a=______cm;寬b=______cm;高c=______cm;
(3)求圖5中直線CD的函數(shù)關(guān)系式;
(4)求圓柱形水槽的底面積S.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直線y=-
4
3
x+4
與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.有兩動(dòng)點(diǎn)C、D同時(shí)從點(diǎn)O出發(fā),其中點(diǎn)C以每秒
3
2
個(gè)單位長(zhǎng)度的速度沿折線OAB按O→A→B的路線運(yùn)動(dòng),點(diǎn)D以每秒4個(gè)單位長(zhǎng)度的速度沿折線OBA按O→B→A的路線運(yùn)動(dòng),當(dāng)C、D兩點(diǎn)相遇時(shí),它們都停止運(yùn)動(dòng).設(shè)C、D同時(shí)從點(diǎn)O出發(fā)t秒時(shí),△OCD的面積為S.
(1)請(qǐng)問(wèn)C、D兩點(diǎn)在運(yùn)動(dòng)過(guò)程中,是否存在CDOB?若存在,請(qǐng)求出此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由;
(2)請(qǐng)求出S關(guān)于t的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍;
(3)設(shè)S0是(2)中函數(shù)S的最大值,那么S0=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案