精英家教網(wǎng)如圖,已知在平行四邊形ABCD中,對角線AC和BD相交于點O.在BC上取點E,使EC=
14
BC
,DE和AC相交于點F.求AO:OF:FC?
分析:根據(jù)題意作輔助線取DE中點G,連接OG,再根據(jù)平行四邊形的性質(zhì)以及EC=
1
4
BC
,即可得出答案.
解答:精英家教網(wǎng)解:取DE中點G,連接OG,
∵四邊形ABCD是平行四邊形,
∴BO=DO,
∴OG=
1
2
BE,OG∥BE,
EC=
1
4
BC

EC=
1
3
BE
,
EC=
2
3
OG

∵OG∥BC,
CF
OF
=
EC
OG
=
2
3
,
∴AO:OF:FC=5:3:2.
點評:本題主要考查了平行線分線段成比例定理,解題的關(guān)鍵是注意方程思想與數(shù)形結(jié)合思想的應(yīng)用,難度適中.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

6、如圖,在平行四邊行ABCD中,DE平分∠ADC交BC邊于點E,已知BE=4cm,AB=6cm,則AD的長度是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)四個頂點都在正方形邊上的四邊形叫做正方形的內(nèi)接四邊形.如圖,四邊形EFGH是正方形ABCD的內(nèi)接平行四邊形,且已知正方形ABCD的邊長為4.
(1)若點E、F、G、H是正方形ABCD四邊中點,試求四邊形EFGH的面積;
(2)設(shè)AE=x,AH=y,請?zhí)接懏攛、y滿足什么條件時,四邊形EFGH是矩形.(要求寫出過程)

查看答案和解析>>

科目:初中數(shù)學 來源:數(shù)學教研室 題型:022

已知如圖所示,在平行四邊ABCD中,對角線相交于點O,已知AB=24cm,BC=18cm,△AOB的周長是54cm那么△AOD的周長是________cm.

查看答案和解析>>

科目:初中數(shù)學 來源:同步訓(xùn)練與評價·數(shù)學·八年級·上 題型:044

閱讀材料,解答問題.

①如圖(1)已知正方形ABCD的對角線AC、BD相交于點O,E是AC上一點,過A作AG⊥EB,垂足為G,AG交BD于F,則OE=OF理由是:∵四邊開ABCD是正方形,∴∠BOE=∠AOF=,BO=AO.又∵AG⊥EB,∠1+∠3==∠2+∠3∴∠1=∠2,∴Rt△BOE≌Rt△AOF解答此題后某同學產(chǎn)生了如下猜想:對上述命題,若點E在AC的延長線上,AG⊥EB,AG交EB的延長線于G,AG的延長線交DB的延長線于F,其它條件不變,如圖,則仍有OE=OF.問猜想所得的結(jié)論是否成立,請說明理由.

②已知:E、F分別是平行四邊形ABCD的邊AD和BC的中點,并且2AB=BC,G是AF和BE的交點,H是CE和DF的交點.(1)試探求四邊形GFHE的形狀;并說明理由.(2)若四邊形GFHE是正方形,平行四邊形ABCD應(yīng)滿足什么條件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:022

已知如圖所示,在平行四邊ABCD中,對角線相交于點O,已知AB=24cm,BC=18cm,△AOB的周長是54cm那么△AOD的周長是________cm.

查看答案和解析>>

同步練習冊答案