【題目】如圖,一艘漁船在B處測得燈塔A在北偏東60°的方向,另一艘貨輪在C處測得燈塔A在北偏東40°的方向,那么在燈塔A處觀看BC時的視角∠BAC是多少度?

【答案】在燈塔A處觀看BC時的視角∠BAC20°.

【解析】

試題先根據(jù)方向角的定義和已知求出∠ABC∠BCA的度數(shù),再利用三角形的內(nèi)角和定理即可求出∠BAC的度數(shù).

試題解析:

解:依題意,得 ∠DBA=60°,∠FCA=40°

∴ ∠ABC=∠DBC-∠DBA =90°-60°=30°

∠BCA=∠BCF+∠FCA=90°+40°=130°

△ABC中,

∠BAC=180°-∠ABC-∠BCA =180°-30°-130°=20°

答:在燈塔A處觀看BC時的視角∠BAC20°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料
【材料一】按一定順序排列的一列數(shù)稱為數(shù)列,記作:{an}(n屬于正整數(shù)).?dāng)?shù)列中的每一個數(shù)都叫做這個數(shù)列的項(xiàng),排在第一位的數(shù)稱為這個數(shù)列的第l項(xiàng)
(通常也叫做首項(xiàng)),記作:al;排在第二位的數(shù)稱為這個數(shù)列的第2項(xiàng),記作:a2;…;排在第打位的數(shù)稱為這個數(shù)列的第n項(xiàng),記作:an
【材料二】如果一個數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個常數(shù),這個數(shù)列就叫做等差數(shù)列.這個常數(shù)叫做等差數(shù)列的公差,公差常用字母d表示.
例如:數(shù)列l(wèi)0,l5,20,25是等差數(shù)列.
如果數(shù)列al , a2 , a3 , …,an , …是等差數(shù)列,那么a2﹣al=d,a3﹣a2=d,…,
an﹣anl=d.即:a2=al+d,a3=a2+d=al+d+d=al+2d,a4=a3+d=al+3d,….
根據(jù)上述材料,解答問題
(1)下列數(shù)列屬于等差數(shù)列的是 (只填序號).
①l,2,3,4,5.②2,4,6,8,10,11.③l,1,1,1,1.
(2)已知數(shù)列{an}是等差數(shù)列,
①al=1,a2=4,a3=7,….則al0=
②首項(xiàng)a1=23,公差d=2,則an=
(3)已知等差數(shù)列{an}滿足a2=0,a6+a8=﹣10.求an

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將菱形紙片ABCD折疊,使點(diǎn)A恰好落在菱形的對稱中心O處,折痕為EF,若菱形ABCD的邊長為2cm,∠A=120°,則EF=cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于點(diǎn)D.點(diǎn)P從點(diǎn)D出發(fā),沿線段DC向點(diǎn)C運(yùn)動,點(diǎn)Q從點(diǎn)C出發(fā),沿線段CA向點(diǎn)A運(yùn)動,兩點(diǎn)同時出發(fā),速度都為每秒1個單位長度,當(dāng)點(diǎn)P運(yùn)動到C時,兩點(diǎn)都停止.設(shè)運(yùn)動時間為t秒.

(1)求線段CD的長;
(2)當(dāng)t為何值時,△CPQ與△ABC相似?
(3)當(dāng)t為何值時,△CPQ為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把一張三角形紙片沿DE折疊,當(dāng)點(diǎn)A落在四邊形BCED的內(nèi)部時,∠A、1、2之間的關(guān)系是(  )

A. A1+2 B. 2A1+2

C. 3A1+2 D. 4A1+2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2﹣2(k﹣1)x+k2=0,
(1)當(dāng)k為何值時,方程有實(shí)數(shù)根;
(2)設(shè)x1 , x2是方程的兩個實(shí)數(shù)根,且x12+x22=4,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【定義】已知P為△ABC所在平面內(nèi)一點(diǎn),連接PA,PB,PC,在△PAB,△PBC和△PAC中,若存在一個三角形與△ABC相似(全等除外),那么就稱P為△ABC的“共相似點(diǎn)”,根據(jù)“共相似點(diǎn)”是否落在三角形的內(nèi)部,邊上或外部,可將其分為“內(nèi)共相似點(diǎn)”,“邊共相似點(diǎn)”或“外共相似點(diǎn)”.
(1)據(jù)定義可知,等邊三角形(填“存在”或“不存在”)共相似點(diǎn).
(2)如圖1,若△ABC的一個邊共相似點(diǎn)P與其對角頂點(diǎn)B的連線,將△ABC分割成的兩個三角形恰與原三角形均相似,試判斷△ABC的形狀,并說明理由.

(3)如圖2,在△ABC中,∠A<∠B<∠C,高線CD與角平分線BE交于點(diǎn)P,若P是△ABC的一個內(nèi)共相似點(diǎn),試說明點(diǎn)E是△ABC的邊共相似點(diǎn),并直接寫出∠A的度數(shù).

(4)如圖3,在Rt△ABC中,∠C=90°,∠A=30°,BC= ,若△PBC與△ABC相似,則滿足條件的P點(diǎn)共有個,順次連接所有滿足條件的P點(diǎn)而圍成的多邊形的周長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖放置的△OAB1,△B1A1B2,△B2A2B3,…都是邊長為1的等邊三角形,點(diǎn)A在x軸上,點(diǎn)O,B1,B2,B3,…都在正比例函數(shù)y=kx的圖象l上,則點(diǎn)A2016的坐標(biāo)是_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地開辟一塊長方形的荒地用于新建一個以環(huán)保為主題的公園.已知這塊荒地的長是寬的2倍,它的面積為400 000 m2,那么:

(1)荒地的寬是多少?有1 000 m嗎?(結(jié)果保留一位小數(shù))

(2)如果要求結(jié)果保留整數(shù),那么寬大約是多少?

(3)計劃在該公園中心建一個圓形花圃,面積是800 m2,你能估計它的半徑嗎?(要求結(jié)果保留整數(shù))

查看答案和解析>>

同步練習(xí)冊答案