如圖:在△ABC中,AD=AE,BD=EC,∠ADB=∠AEC=105°,∠B=40°,則∠CAE= ;
35°
解析試題分析:根據(jù)AD=AE,BD=EC,∠ADB=∠AEC=105°,即可證得△ADB≌△AEC,從而得到AB=AC,根據(jù)等腰三角形的性質(zhì)即可得到結(jié)果.
∵AD=AE,BD=EC,∠ADB=∠AEC=105°,
∴△ADB≌△AEC,
∴AB=AC,
∴∠B=∠C=40°,
在△AEC中,∠CAE+∠C+∠AEC=180°,
∴∠CAE=180°-40°-105°=35°.
考點(diǎn):本題考查了等腰三角形的性質(zhì),全等三角形的判定和性質(zhì)
點(diǎn)評(píng):解答本題的關(guān)鍵是先證得AB=AC,再根據(jù)等腰三角形等邊對(duì)等角的關(guān)系求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
A、
| ||||
B、(
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com