已知:如圖,△ABC內(nèi)接于⊙O,AB為直徑,∠CBA的平分線交AC于點(diǎn)F,交⊙O于點(diǎn)D,DE⊥AB于點(diǎn)E,且交AC于點(diǎn)P,連接AD. 
(1)AP=PD;
(2)請(qǐng)判斷A,D,F(xiàn)三點(diǎn)是否在以P為圓心,以PD為半徑的圓上?并說明理由;
(3)連接CD,若CD﹦3,BD﹦4,求⊙O的半徑和DE的長.
分析:(1)根據(jù)圓周角定理得出∠DAC=∠CBD,以及∠CBD=∠DBA可得出∠DAC=∠DBA,再由直角三角形的性質(zhì)即可得出答案;
(2)首先得出∠ADB=90°,再根據(jù)∠DFA+∠DAC=∠ADE+∠PDF=90°,且∠ADB=90°得出∠PDF=∠PFD,從而得出PA=PF;
(3)利用圓心角、弧、弦的關(guān)系定理得出AD=CD,進(jìn)而利用勾股定理求出AB的長,以及利用直角三角形面積公式求出DE的長即可.
解答:(1)證明:∵BD平分∠CBA,
∴∠CBD=∠DBA,
∵∠DAC與∠CBD都是弧CD所對(duì)的圓周角,
∴∠DAC=∠CBD,
∴∠DAC=∠DBA,
∵AB是⊙O的直徑,DE⊥AB,
∴∠ADB=∠AED=90°,
∴∠ADE+∠DAE=90°,∠DBA+∠DAE=90°,
∴∠ADE=∠DBA,
∴∠DAC=∠ADE,
∴PA=PD;

(2)解:A,D,F(xiàn)三點(diǎn)是在以P為圓心,以PD為半徑的圓上.理由如下:
∵AB為直徑,
∴∠ADB=90°,
∵DE⊥AB于E,
∴∠DEB=90°,
∴∠ADE+∠EDB=∠ABD+∠EDB=90°,
∴∠ADE=∠ABD=∠DAP,
∴PD=PA,
∵∠DFA+∠DAC=∠ADE+∠PDF=90°,且∠ADB=90°,
∴∠PDF=∠PFD,
∴PD=PF,
∴PA=PF,即P是線段AF的中點(diǎn),
故A,D,F(xiàn)三點(diǎn)是在以P為圓心,以PD為半徑的圓上;

(3)解:∵∠CBD=∠DBA,
∴CD=AD,
∵CD﹦3,∴AD=3,
∵∠ADB=90°,
∴AB=
AD2+BD2
=
32+42
=5,
故⊙O的半徑為2.5,
∵DE×AB=AD×BD,
∴5DE=3×4,
∴DE=2.4.
即DE的長為2.4.
點(diǎn)評(píng):本題考查的是圓周角定理和等腰三角形的性質(zhì)以及勾股定理和三角形面積公式等知識(shí),根據(jù)證明PD=PA以及PD=PF得出答案是解決問題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、已知,如圖,△ABC中,∠BAC=90°,AD⊥BC于點(diǎn)D,BE平分∠ABC,交AD于點(diǎn)M,AN平分∠DAC,交BC于點(diǎn)N.
求證:四邊形AMNE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,∠ABC、∠ACB 的平分線相交于點(diǎn)F,過F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,△ABC是等邊三角形,點(diǎn)D在AB上,點(diǎn)E在AC的延長線上,且BD=CE,DE交BC于F,求證:BF=CF+CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,△ABC中,AB=AC=10,BC=16,點(diǎn)D在BC上,DA⊥CA于A.
求:BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,△ABC中,AD⊥BC,BD=DE,點(diǎn)E在AC的垂直平分線上.
(1)請(qǐng)問:AB、BD、DC有何數(shù)量關(guān)系?并說明理由.
(2)如果∠B=60°,請(qǐng)問BD和DC有何數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案