(2008•咸寧)“5•12”四川汶川大地震的災情牽動全國人民的心,某市A、B兩個蔬菜基地得知四川C、D兩個災民安置點分別急需蔬菜240噸和260噸的消息后,決定調運蔬菜支援災區(qū).已知A蔬菜基地有蔬菜200噸,B蔬菜基地有蔬菜300噸,現(xiàn)將這些蔬菜全部調往C、D兩個災民安置點.從A地運往C、D兩處的費用分別為每噸20元和25元,從B地運往C、D兩處的費用分別為每噸15元和18元.設從B地運往C處的蔬菜為x噸.
(1)請?zhí)顚懴卤,并求兩個蔬菜基地調運蔬菜的運費相等時x的值;
CD總計
A200噸
Bx噸300噸
總計240噸260噸500噸
(2)設A、B兩個蔬菜基地的總運費為w元,寫出w與x之間的函數(shù)關系式,并求總運費最小的調運方案;
(3)經(jīng)過搶修,從B地到C處的路況得到進一步改善,縮短了運輸時間,運費每噸減少m元(m>0),其余線路的運費不變,試討論總運費最小的調運方案.
【答案】分析:(1)根據(jù)題意可得解.
(2)w與x之間的函數(shù)關系式為:w=2x+9200;列不等式方程組解出40≤x≤240,可得w隨x的增大而增大.
(3)本題根據(jù)x的取值范圍不同有不同的調運方案.
解答:解:(1)填表
CD總計
A(240-x)噸(x-40)噸200噸
Bx噸(300-x)噸300噸
總計240噸260噸500噸
依題意得:20(240-x)+25(x-40)=15x+18(300-x).(4分)
解得:x=200.(5分)

(2)w與x之間的函數(shù)關系為:w=2x+9200.(8分)
依題意得:
∴40≤x≤240(9分)
在w=2x+9200中,∵2>0,∴w隨x的增大而增大,
故當x=40時,總運費最小,(10分)
此時調運方案為如表-.
  C
 200噸0噸 
B 40噸260噸 
(11分)

(3)由題意知w=(2-m)x+9200
∴0<m<2時,(2)中調運方案總運費最。唬12分)
m=2時,在40≤x≤240的前提下調運
方案的總運費不變;(13分)
2<m<15時,x=240總運費最小,
其調運方案如表二.
CD
A 0噸200噸
B240噸60噸

點評:考查學生列方程解應用題.方案設計問題是初中數(shù)學經(jīng)常出現(xiàn)的問題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2008•咸寧)如圖,在平面直角坐標系中,直線l是第一、三象限的角平分線.
實驗與探究:
(1)由圖觀察易知A(0,2)關于直線l的對稱點A′(2,0)的坐標為(2,0),請在圖中分別標明B(5,3)、C(-2,5)關于直線l的對稱點B′、C′的位置,并寫出他們的坐標:B′______、C′______;
歸納與發(fā)現(xiàn):
(2)結合圖形觀察以上三組點的坐標,你會發(fā)現(xiàn):坐標平面內任一點P(a,b)關于第一、三象限的角平分線l的對稱點P′的坐標為______(不必證明);
運用與拓廣:
(3)已知兩點D(1,-3)、E(-1,-4),試在直線l上確定一點Q,使點Q到D、E兩點的距離之和最小,并求出Q點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年浙江省杭州市蕭山區(qū)中考模擬數(shù)學試卷(益農(nóng)鎮(zhèn)中 張向東)(解析版) 題型:解答題

(2008•咸寧)如圖,在平面直角坐標系中,直線l是第一、三象限的角平分線.
實驗與探究:
(1)由圖觀察易知A(0,2)關于直線l的對稱點A′(2,0)的坐標為(2,0),請在圖中分別標明B(5,3)、C(-2,5)關于直線l的對稱點B′、C′的位置,并寫出他們的坐標:B′______、C′______;
歸納與發(fā)現(xiàn):
(2)結合圖形觀察以上三組點的坐標,你會發(fā)現(xiàn):坐標平面內任一點P(a,b)關于第一、三象限的角平分線l的對稱點P′的坐標為______(不必證明);
運用與拓廣:
(3)已知兩點D(1,-3)、E(-1,-4),試在直線l上確定一點Q,使點Q到D、E兩點的距離之和最小,并求出Q點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年云南省中考模擬測試(解析版) 題型:解答題

(2008•咸寧)如圖,在平面直角坐標系中,直線l是第一、三象限的角平分線.
實驗與探究:
(1)由圖觀察易知A(0,2)關于直線l的對稱點A′(2,0)的坐標為(2,0),請在圖中分別標明B(5,3)、C(-2,5)關于直線l的對稱點B′、C′的位置,并寫出他們的坐標:B′______、C′______;
歸納與發(fā)現(xiàn):
(2)結合圖形觀察以上三組點的坐標,你會發(fā)現(xiàn):坐標平面內任一點P(a,b)關于第一、三象限的角平分線l的對稱點P′的坐標為______(不必證明);
運用與拓廣:
(3)已知兩點D(1,-3)、E(-1,-4),試在直線l上確定一點Q,使點Q到D、E兩點的距離之和最小,并求出Q點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年廣東省汕頭市濠江區(qū)中考數(shù)學模擬試卷(解析版) 題型:解答題

(2008•咸寧)如圖,在平面直角坐標系中,直線l是第一、三象限的角平分線.
實驗與探究:
(1)由圖觀察易知A(0,2)關于直線l的對稱點A′(2,0)的坐標為(2,0),請在圖中分別標明B(5,3)、C(-2,5)關于直線l的對稱點B′、C′的位置,并寫出他們的坐標:B′______、C′______;
歸納與發(fā)現(xiàn):
(2)結合圖形觀察以上三組點的坐標,你會發(fā)現(xiàn):坐標平面內任一點P(a,b)關于第一、三象限的角平分線l的對稱點P′的坐標為______(不必證明);
運用與拓廣:
(3)已知兩點D(1,-3)、E(-1,-4),試在直線l上確定一點Q,使點Q到D、E兩點的距離之和最小,并求出Q點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年湖北省咸寧市中考數(shù)學試卷(解析版) 題型:解答題

(2008•咸寧)如圖,在平面直角坐標系中,直線l是第一、三象限的角平分線.
實驗與探究:
(1)由圖觀察易知A(0,2)關于直線l的對稱點A′(2,0)的坐標為(2,0),請在圖中分別標明B(5,3)、C(-2,5)關于直線l的對稱點B′、C′的位置,并寫出他們的坐標:B′______、C′______;
歸納與發(fā)現(xiàn):
(2)結合圖形觀察以上三組點的坐標,你會發(fā)現(xiàn):坐標平面內任一點P(a,b)關于第一、三象限的角平分線l的對稱點P′的坐標為______(不必證明);
運用與拓廣:
(3)已知兩點D(1,-3)、E(-1,-4),試在直線l上確定一點Q,使點Q到D、E兩點的距離之和最小,并求出Q點坐標.

查看答案和解析>>

同步練習冊答案