已知四邊形為直角梯形.動(dòng)點(diǎn)P從A點(diǎn)出發(fā)依次沿線段, 向點(diǎn)D移動(dòng),設(shè)移動(dòng)路程為x,△的面積y關(guān)于x的函數(shù)關(guān)系如圖4所示.
(1) 若圖4中,請(qǐng)你確定的長(zhǎng);
(2) 在(1)的條件下,連接,當(dāng)點(diǎn)P運(yùn)動(dòng)到上,過(guò)點(diǎn)P作,交線段AC于Q(如圖2),若線段的動(dòng)點(diǎn)N使△為等腰直角三角形,則的長(zhǎng)為多少?
(3) 若圖4中,當(dāng)P運(yùn)動(dòng)到的中點(diǎn)時(shí),連接,且相交于點(diǎn)M,試問(wèn)以 為頂點(diǎn)的三角形能否與△相似?若能,請(qǐng)求出圖4中a的值;若不能,請(qǐng)說(shuō)明理由.

(1) , 
(2)由(1)知,存在如下圖的三種等腰三角形的情況:
   
   易求得,PQ的長(zhǎng)為
(3) 當(dāng)時(shí),
   由已知,以 為頂點(diǎn)的三角形與△相似,
  又易證得∠﹦∠
  ∴另一對(duì)對(duì)應(yīng)角相等有兩種情況:①∠﹦∠;②∠﹦∠
  當(dāng)∠﹦∠時(shí),∵
  ∴∠﹦∠,
  ∴∠﹦∠
  ∴,易得;
  當(dāng)∠﹦∠時(shí),∵,
  ∴∠﹦∠, ∴∠﹦∠
 又∠是公共角,∴△∽△
 ∴, 即,
   可解得=
  綜上所述,所求線段AD的長(zhǎng)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知拋物線y=x2+bx-3a過(guò)點(diǎn)A(1,0),B(0,-3),與x軸交于另一點(diǎn)C.
(1)求拋物線的解析式;
(2)若在第三象限的拋物線上存在點(diǎn)P,使△PBC為以點(diǎn)B為直角頂點(diǎn)的直角三角形,求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,在拋物線上是否存在一點(diǎn)Q,使以P,Q,B,C為頂點(diǎn)的四邊形為直角梯形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:在直角梯形COAB中,OC∥AB,以O(shè)為原點(diǎn)建立平面直角坐標(biāo)系,A,B,C三點(diǎn)的坐標(biāo)分別為A(8,0),B(8,10),C(0,4),點(diǎn)D為線段BC的中點(diǎn),動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)單位的速度,沿折線OABD的路線移動(dòng),移動(dòng)的時(shí)間為t秒.
(1)求直線BC的解析式;
(2)若動(dòng)點(diǎn)P在線段OA上移動(dòng),當(dāng)t為何值時(shí),四邊形OPDC的面積是梯形COAB面積的
27
;
(3)動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿折線OABD的路線移動(dòng)過(guò)程中,設(shè)△OPD的面積為S,請(qǐng)寫出S與t的精英家教網(wǎng)函數(shù)關(guān)系式,并指出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•武漢模擬)如圖1,已知拋物線y=x2-2x-3與x軸交于點(diǎn)A和點(diǎn)B,與y軸相交于點(diǎn)C.
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)點(diǎn)D為射線CB上的一動(dòng)點(diǎn)(點(diǎn)D、B不重合),過(guò)點(diǎn)B作x軸的垂線BE與以點(diǎn)D為頂點(diǎn)的拋物線y=(x-t)2+h相交于點(diǎn)E,從△ADE和△ADB中任選一個(gè)三角形,求出當(dāng)其面積等于△ABE的面積時(shí)的t的值;(友情提示:1、只選取一個(gè)三角形求解即可;2、若對(duì)兩個(gè)三角形都作了解答,只按第一個(gè)解答給分.)
(3)如圖2,若點(diǎn)P是直線y=x上的一個(gè)動(dòng)點(diǎn),點(diǎn)Q是拋物線上的一個(gè)動(dòng)點(diǎn),若以點(diǎn)O,C,P和Q為頂點(diǎn)的四邊形為直角梯形,求相應(yīng)的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•奉賢區(qū)二模)如圖,已知二次函數(shù)y=-x2+2mx的圖象經(jīng)過(guò)點(diǎn)B(1,2),與x軸的另一個(gè)交點(diǎn)為A,點(diǎn)B關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為C,過(guò)點(diǎn)B作直線BM⊥x軸垂足為點(diǎn)M.
(1)求二次函數(shù)的解析式;
(2)在直線BM上有點(diǎn)P(1,
32
),聯(lián)結(jié)CP和CA,判斷直線CP與直線CA的位置關(guān)系,并說(shuō)明理由;
(3)在(2)的條件下,在坐標(biāo)軸上是否存在點(diǎn)E,使得以A、C、P、E為頂點(diǎn)的四邊形為直角梯形?若存在,求出所有滿足條件的點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案