【題目】如圖,直線y=2x﹣6與反比例函數(shù)的圖象交于點(diǎn)A(4,2),與x軸交于點(diǎn)B.
(1)求k的值及點(diǎn)B的坐標(biāo);
(2)在x軸上是否存在點(diǎn)C,使得AC=AB?若存在,求出點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)k=8,B(3,0);(2)存在,C(5,0)
【解析】解:(1)∵點(diǎn)A(4,2)在反比例函數(shù)的圖象上,
∴把(4,2)代入反比例函數(shù),得k=8。
把y=0代入y=2x﹣6中,可得x=3。
∴B點(diǎn)坐標(biāo)是(3,0)。
(2)存在。
假設(shè)存在,設(shè)C點(diǎn)坐標(biāo)是(a,0),則
∵AB=AC,∴,即(4﹣a)2+4=5。
解得a=5或a=3(此點(diǎn)與B重合,舍去)。
∴點(diǎn)C的坐標(biāo)是(5,0)。
(1)先把(4,2)代入反比例函數(shù)解析式,易求k,再把y=0代入一次函數(shù)解析式可求B點(diǎn)坐標(biāo)。
(2)假設(shè)存在,設(shè)C點(diǎn)坐標(biāo)是(a,0),然后利用勾股定理可得,
解方程,即得a=3或a=5,其中a=3和B點(diǎn)重合,舍去,故C點(diǎn)坐標(biāo)可求。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)的圖像分別交y軸、x軸交于點(diǎn)A、B,點(diǎn)P從點(diǎn)B出發(fā),沿射線BA以每秒1個(gè)單位的速度出發(fā),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.
(1)點(diǎn)P在運(yùn)動(dòng)過(guò)程中,若某一時(shí)刻,△OPA的面積為6,求此時(shí)P的坐標(biāo);
(2)在整個(gè)運(yùn)動(dòng)過(guò)程中,當(dāng)t為何值時(shí),△AOP為等腰三角形?(只需寫(xiě)出t的值,無(wú)需解答過(guò)程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中, 于點(diǎn), 于點(diǎn), 為邊的中點(diǎn),連接、,則下列結(jié)論:①;②為等邊三角形.下面判斷正確是( )
A. ①正確 B. ②正確
C. ①②都正確 D. ①②都不正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】第五次全國(guó)人口普查結(jié)果顯示,我國(guó)的總?cè)丝谝堰_(dá)到1300000000人,用科學(xué)記數(shù)法表示這個(gè)數(shù),結(jié)果正確的是( )
A. 0.13×1010
B. 1.3×109
C. 13×108
D. 130×107
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)是內(nèi)任意一點(diǎn),=5 cm,點(diǎn)和點(diǎn)分別是射線和射線上的動(dòng)點(diǎn),的最小值是5 cm,則的度數(shù)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:三邊長(zhǎng)和面積都是整數(shù)的三角形稱為“整數(shù)三角形”.
數(shù)學(xué)學(xué)習(xí)小組的同學(xué)從32根等長(zhǎng)的火柴棒(每根長(zhǎng)度記為1個(gè)單位)中取出若干根,首尾依次相接組成三角形,進(jìn)行探究活動(dòng).
小亮用12根火柴棒,擺成如圖所示的“整數(shù)三角形”
小穎分別用24根和30根火柴棒擺出直角“整數(shù)三角形”
小輝受到小亮、小穎的啟發(fā),分別擺出三個(gè)不同的等腰“整數(shù)三角形”.
(1)請(qǐng)你畫(huà)出小穎和小輝擺出的“整數(shù)三角形”的示意圖.
(2)你能否也從中取出若干根,擺出一個(gè)非特殊(既非直角三角形,也非等腰三角形)“整數(shù)三角形”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一塊直角三角板DEF放置在△ABC上,三角板DEF的兩條直角邊DE、DF恰好分別經(jīng)過(guò)點(diǎn)B、C.△ABC中,∠A=50°,求∠DBA+∠DCA的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)分別為A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).
(1)把△ABC向上平移3個(gè)單位后得到△A1B1C1,請(qǐng)畫(huà)出△A1B1C1并寫(xiě)出點(diǎn)B1的坐標(biāo);
B1( , )
(2)若通過(guò)向右平移個(gè)單位,再向上平移個(gè)單位,就可以把△ABC全部移到第一象限內(nèi),請(qǐng)寫(xiě)出和的取值范圍。
: :
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com