如圖①,將四邊形紙片ABCD沿兩組對(duì)邊中點(diǎn)連線剪切為四部分,將這四部分密鋪可得到如圖②所示的平行四邊形,若要密鋪后的平行四邊形為矩形,則四邊形ABCD需要滿足的條件是   
【答案】分析:首先認(rèn)真讀題,理解題意.密鋪后的平行四邊形成為矩形,必須四個(gè)內(nèi)角均為直角,據(jù)此需要判定中點(diǎn)四邊形EFGH為菱形,進(jìn)而由中位線定理判定四邊形ABCD的對(duì)角線垂直.
解答:解:對(duì)角線AC=BD時(shí),密鋪后的平行四邊形為矩形.
密鋪后的平行四邊形成為矩形,必須四個(gè)內(nèi)角均為直角.
如解答圖所示,連接EF、FG、GH、HE,設(shè)EG與HF交于點(diǎn)O,
連接AC、BD,由中位線定理得:EF∥AC∥GH,且EF=GH=AC,
EH∥BD∥FG,且EH=FG=BD,
∵AC=BD,
∴中點(diǎn)四邊形EFGH為菱形.
∴EG⊥HF,
∴四邊形ABCD為矩形.
故答案為:AC=BD.
點(diǎn)評(píng):本題考查圖形剪拼與中點(diǎn)四邊形.解題關(guān)鍵是理解三角形中位線的性質(zhì),熟練應(yīng)用矩形、菱形等特殊四邊形的判定與性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、如圖,有一四邊形紙片ABCD,AB∥CD,AD∥BC,∠A=60°,將紙片分別沿折痕MN、PQ折疊,使點(diǎn)A與AB邊上的點(diǎn)E重合,點(diǎn)C與CD邊上的點(diǎn)F重合,EG平分∠MEB交CD于G,F(xiàn)H平分∠PFD交AB于H.試說(shuō)明:
(1)EG∥FH;(2)ME∥PF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,已知四邊形紙片ABCD中,AD∥BC,將∠ABC、∠DAB分別對(duì)折,如果兩條折痕恰好相交于DC上一點(diǎn)E,你能獲得哪些結(jié)論?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•河北區(qū)三模)如圖,一任意四邊形紙片ABCD中,E,F(xiàn),G,H為各邊中點(diǎn),則EG與HF的關(guān)系為:①相等;②互相垂直;③互相平分;④垂直平分;⑤相等且垂直.請(qǐng)選擇正確序號(hào)
;請(qǐng)利用三條裁剪線將原圖形剪拼成一個(gè)與之面積相等的平行四邊形,在圖中畫(huà)出裁剪線及剪拼成的平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•六合區(qū)一模)我們可以將一個(gè)紙片通過(guò)剪切,結(jié)合圖形的平移、旋轉(zhuǎn)、翻折,重新拼接成一個(gè)新的圖形.如圖1,沿△ABC的中位線DE剪切,將△ADE繞點(diǎn)E順時(shí)針旋轉(zhuǎn)180°,可得到?BCFD.請(qǐng)嘗試解決下面問(wèn)題(寫畫(huà)法,保留痕跡,并作必要說(shuō)明):
(1)將梯形紙片剪拼成平行四邊形:請(qǐng)?jiān)趫D2中畫(huà)出示意圖,要求用兩種不同的畫(huà)法,并簡(jiǎn)要說(shuō)明如何剪拼和變換的;

(2)如圖3,將四邊形ABCD剪拼成平行四邊形.在圖中畫(huà)出示意圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下列材料:一個(gè)直角三角形紙片ABC,分別取AB、AC邊的中點(diǎn)M、N,連接MN,作∠AHM=∠AHN=90°,將三角形紙片沿AH、MN剪開(kāi)分割成三塊,如圖1所示;如圖2,將三角形紙片①繞AB的中點(diǎn)M旋轉(zhuǎn)至三角形紙片④處,將三角形紙片②繞AC的中點(diǎn)N旋轉(zhuǎn)至三角形紙片⑤處,依此方法操作,可以把直角三角形紙片ABC拼接成一個(gè)與它面積相等的長(zhǎng)方形紙片DBCE.
解決下列問(wèn)題:

(1)如圖3,一個(gè)任意三角形紙片ABC,將其分割后拼接成一個(gè)與三角形ABC的面積相等的長(zhǎng)方形,在圖3中畫(huà)出分割的實(shí)線和拼接的虛線;
(2)如圖4,一個(gè)任意四邊形紙片ABCD,將其分割后拼接成一個(gè)與四邊形ABCD的面積相等的長(zhǎng)方形,在圖4畫(huà)出分割的實(shí)線和拼接的虛線.

查看答案和解析>>

同步練習(xí)冊(cè)答案