如圖,已知正三角形的邊長2a
(1)求它的內(nèi)切圓與外接圓組成的圓環(huán)的面積;
(2)根據(jù)計算結(jié)果,要求圓環(huán)的面積,只需測量哪一條弦的大小就可算出圓環(huán)的面積?
(3)將條件中的“正三角形”改為“正方形”、“正六邊形”你能得出怎樣的結(jié)論;
(4)已知正n邊形的邊長為2a,請寫出它的內(nèi)切圓與外接圓組成的圓環(huán)的面積.

【答案】分析:正多邊形的邊心距,半徑,邊長的一半正好構(gòu)成直角三角形,根據(jù)勾股定理就可以求解.
解答:解:(1)設(shè)正三角形ABC的中心為O,BC切⊙O于點D連接OB、OD,則OD⊥BC,BD=DC=a;
則S圓環(huán)=π•OB2-π•OD2=π?OB2-OD2?=BD2•π=πa2
(2)只需測出弦BC的長(或AC,AB).
(3)結(jié)果一樣,即S圓環(huán)=πa2
(4)S圓環(huán)=πa2
點評:正多邊形的計算,一般是過中心作邊的垂線,連接半徑,把內(nèi)切圓半徑,外接圓半徑和高,中心角之間的計轉(zhuǎn)化為解直角三角形.本題是巧用了勾股定理.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

29、如圖,已知正三角形的邊長2a
(1)求它的內(nèi)切圓與外接圓組成的圓環(huán)的面積;
(2)根據(jù)計算結(jié)果,要求圓環(huán)的面積,只需測量哪一條弦的大小就可算出圓環(huán)的面積?
(3)將條件中的“正三角形”改為“正方形”、“正六邊形”你能得出怎樣的結(jié)論;
(4)已知正n邊形的邊長為2a,請寫出它的內(nèi)切圓與外接圓組成的圓環(huán)的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:第3章《直線與圓、圓與圓的位置關(guān)系》中考題集(39):3.3 圓與圓的位置關(guān)系(解析版) 題型:解答題

如圖,已知正三角形的邊長2a
(1)求它的內(nèi)切圓與外接圓組成的圓環(huán)的面積;
(2)根據(jù)計算結(jié)果,要求圓環(huán)的面積,只需測量哪一條弦的大小就可算出圓環(huán)的面積?
(3)將條件中的“正三角形”改為“正方形”、“正六邊形”你能得出怎樣的結(jié)論;
(4)已知正n邊形的邊長為2a,請寫出它的內(nèi)切圓與外接圓組成的圓環(huán)的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:第3章《圓》中考題集(73):3.7 弧長及扇形的面積(解析版) 題型:解答題

如圖,已知正三角形的邊長2a
(1)求它的內(nèi)切圓與外接圓組成的圓環(huán)的面積;
(2)根據(jù)計算結(jié)果,要求圓環(huán)的面積,只需測量哪一條弦的大小就可算出圓環(huán)的面積?
(3)將條件中的“正三角形”改為“正方形”、“正六邊形”你能得出怎樣的結(jié)論;
(4)已知正n邊形的邊長為2a,請寫出它的內(nèi)切圓與外接圓組成的圓環(huán)的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年甘肅省蘭州市中考數(shù)學試卷(解析版) 題型:解答題

(2005•蘭州)如圖,已知正三角形的邊長2a
(1)求它的內(nèi)切圓與外接圓組成的圓環(huán)的面積;
(2)根據(jù)計算結(jié)果,要求圓環(huán)的面積,只需測量哪一條弦的大小就可算出圓環(huán)的面積?
(3)將條件中的“正三角形”改為“正方形”、“正六邊形”你能得出怎樣的結(jié)論;
(4)已知正n邊形的邊長為2a,請寫出它的內(nèi)切圓與外接圓組成的圓環(huán)的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《圓》(17)(解析版) 題型:解答題

(2005•蘭州)如圖,已知正三角形的邊長2a
(1)求它的內(nèi)切圓與外接圓組成的圓環(huán)的面積;
(2)根據(jù)計算結(jié)果,要求圓環(huán)的面積,只需測量哪一條弦的大小就可算出圓環(huán)的面積?
(3)將條件中的“正三角形”改為“正方形”、“正六邊形”你能得出怎樣的結(jié)論;
(4)已知正n邊形的邊長為2a,請寫出它的內(nèi)切圓與外接圓組成的圓環(huán)的面積.

查看答案和解析>>

同步練習冊答案