根據(jù)題意,解答問題:

(1)如圖1,已知直線y=2x+4與x軸、y軸分別交于A、B兩點,求線段AB的長.
(2)如圖2,類比(1)的解題過程,請你通過構(gòu)造直角三角形的方法,求出點M(3,4)與點N(-2,-1)之間的距離.
(3)在(2)的基礎(chǔ)上,若有一點D在x軸上運動,當(dāng)滿足DM=DN時,請求出此時點D的坐標(biāo).
分析:(1)由一次函數(shù)解析式求得點A、B的坐標(biāo),則易求直角△AOB的兩直角邊OB、OA的長度,所以在該直角三角形中利用勾股定理即可求線段AB的長度;
(2)如圖2,過M點作x軸的垂線MF,過N作y軸的垂線NE,MF和NE交于點C,構(gòu)造直角△MNC,則在該直角三角形中利用勾股定理來求求點M與點N間的距離;
(3)如圖3,設(shè)點D坐標(biāo)為(m,0),連結(jié)ND,MD,過N作NG垂直x軸于G,過M作MH垂直x軸于H.在直角△DGN和直角△MDH中,利用勾股定理得到關(guān)于m的方程12+(m+2)=42+(3-m)2
通過解方程即可求得m的值,則易求點D的坐標(biāo).
解答:解:(1)令x=0,得y=4,即A(0,4).
令y=0,得x=-2,即B(-2,0).
在Rt△AOB中,根據(jù)勾股定理有:
AB=
BO2+AO2
=
(-2)2+42
=2
5
;

(2)如圖2,過M點作x軸的垂線MF,過N作y軸的垂線NE,MF和NE交于點C.
根據(jù)題意:MC=4-(-1)=5,NC=3-(-2)=5.
則在Rt△MCN中,根據(jù)勾股定理有:
MN=
MC2+NC2
=
52+52
=5
2
;

(3)如圖3,設(shè)點D坐標(biāo)為(m,0),連結(jié)ND,MD,過N作NG垂直x軸于G,過M作MH垂直x軸于H.
則GD=|m-(-2)|,GN=1,DN2=GN2+GD2=12+(m+2)2
MH=4,DH=|3-m|,DM2=MH2+DH2=42+(3-m)2
∵DM=DN,
∴DM2=DN2
即12+(m+2)=42+(3-m)2
整理得:10m=20  得m=2 
∴點D的坐標(biāo)為(2,0).
點評:本題考查了勾股定理、一次函數(shù)圖象上點的坐標(biāo)特征.注意:突破此題的難點的方法是輔助線的作法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2011•呼倫貝爾)根據(jù)題意,解答問題:
(1)如圖①,已知直線y=2x+4與x軸、y軸分別交于A、B兩點,求線段AB的長.
(2)如圖②,類比(1)的解題過程,請你通過構(gòu)造直角三角形的方法,求出點M(3,4)與點N(-2,-1)之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

根據(jù)題意,解答問題:

(1)如圖1,已知直線y=2x+4與x軸、y軸分別交于A、B兩點,求線段AB的長.

(2)如圖2,類比(1)的解題過程,請你通過構(gòu)造直角三角形的方法,求出點M(3,4)與點N(﹣2,﹣1)之間的距離.

(3)在(2)的基礎(chǔ)上,若有一點D在x軸上運動,當(dāng)滿足DM=DN時,請求出此時點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

根據(jù)題意,解答問題:
(1)如圖①,已知直線y=2x+4與x軸、y軸分別交于A、B兩點,求線段AB的長.
(2)如圖②,類比(1)的解題過程,請你通過構(gòu)造直角三角形的方法,求出點M(3,4)與點N(-2,-1)之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年內(nèi)蒙古呼倫貝爾市中考數(shù)學(xué)試卷(解析版) 題型:解答題

根據(jù)題意,解答問題:
(1)如圖①,已知直線y=2x+4與x軸、y軸分別交于A、B兩點,求線段AB的長.
(2)如圖②,類比(1)的解題過程,請你通過構(gòu)造直角三角形的方法,求出點M(3,4)與點N(-2,-1)之間的距離.

查看答案和解析>>

同步練習(xí)冊答案