如圖,半徑為2的兩個等圓與⊙O1外切于點P,過點O1作⊙O2的兩條切線,切點分別為A,B,與⊙O1分別交于點C,D,則
APB
CPD
的弧長之和為( 。
分析:分析:首先根據(jù)切線的性質(zhì)得出∠AO1B=60°,∠A02B=120°,再根據(jù)弧長的計算公式是,就可以求出兩條弧的長.
解答:解:連接O1O2,O2A,O2B
∵O1A是切線,∴O2A⊥O1A,
又∵O1O2=2O2A,∴∠AO1O2=30°,
∴∠AO1B=60°,∠A02B=120°,
CPD的弧長=
nπr
180
=
3
,APB的弧長=
nπr
180
=
3
,
∴APB與CPD的弧長之和為2π.
故選C.
點評:此題主要考查了切線的性質(zhì)定理,利用三角函數(shù)求出圓心角,再根據(jù)弧長的公式求出弧長,求圓心角是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,半徑為2的兩個等圓⊙O1,⊙O2外切于點A,O2C切⊙O1于點C,弦BC∥O1O2,連接AB,AC,則圖中陰影部分的面積等于
 
.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,半徑為2的兩個等圓⊙O1與⊙O2外切于點P,過O1作⊙O2的兩條切線,切點分別為A,B,與⊙O1分別交于C,D,則APB與CPD的弧長之和為( 。
A、2π
B、
3
2
π
C、π
D、
1
2
π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,半徑為5的兩個等圓⊙O1與⊙O2相交于A、B,公共弦AB=8.由點O1向⊙O2作切線O1C,切點為C,則O1C的長為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•高淳縣一模)如圖,半徑為2的兩個等圓⊙O1與⊙O2外切于點P,過O1作⊙O2的兩條切線,切點分別為A、B,與⊙O1分別交于C、D,則弧APB與弧CPD的長度之和為

查看答案和解析>>

同步練習(xí)冊答案