【題目】如圖,在△ABC中,∠ACB=90°,∠A=20°.將△ABC繞點C按逆時針方向旋轉(zhuǎn)得△A′B′C,且點B在A′B′ 上,CA′ 交AB于點D,則∠BDC的度數(shù)為( )
A. 40°B. 50°C. 60°D. 70°
【答案】C
【解析】
根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠A=∠A′=20°,CB=CB′,則∠CBA=∠B′=90°-20°=70°.根據(jù)等腰三角形的性質(zhì)可得∠CBB′=∠B′=70°,利用平角定義可求出∠A′BD的度數(shù),由外角性質(zhì)即可得∠BDC的度數(shù).
∵將△ABC繞點C按逆時針方向旋轉(zhuǎn)得△A′B′C,∠A=20°,∠ACB=90°,
∴∠A=∠A′=20°,CB=CB′,
∴∠CBA=∠B′=90°-20°=70°,
∴∠CBB′=∠B′=70°,
∴∠A′BD=180°-∠CBB′-∠CBA=180°-70°-70°=40°,
∴∠BDC=∠A′+∠A′BD=20°+40°=60°,
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=x2﹣4x的圖象與x軸、直線y=x的一個交點分別為點A、B,CD是線段OB上的一動線段,且CD=2,過點C、D的兩直線都平行于y軸,與拋物線相交于點F、E,連接EF.
(1)點A的坐標(biāo)為 ,線段OB的長= ;
(2)設(shè)點C的橫坐標(biāo)為m.
①當(dāng)四邊形CDEF是平行四邊形時,求m的值;
②連接AC、AD,求m為何值時,△ACD的周長最小,并求出這個最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,作等邊△ABC,取AC的中點D,以AD為邊向△ABC形外作等邊△ADE,取AE的中點G,再以EG為邊作等邊△EFG,如此反復(fù),當(dāng)作出第6個三角形時,若AB=4,整個圖形的外圍周長是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=圖象交于A(-2,1)、B(1,n)兩點.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象寫出使一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD=BC,∠A=∠B,E為AB的中點,連結(jié)CE,DE.
(1)求證:△ADE≌△BCE.
(2)若∠A=70°,∠BCE=60°,求∠CDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A、B在雙曲線y=(x<0)上,連接OA、AB,以OA、AB為邊作□OABC.若點C恰落在雙曲線y=(x>0)上,此時□OABC的面積為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“一帶一路”的戰(zhàn)略構(gòu)想為國內(nèi)許多企業(yè)的發(fā)展帶來了新的機遇,某公司生產(chǎn)A,B兩種機械設(shè)備,每臺B種設(shè)備的成本是A種設(shè)備的1.5倍,公司若投入16萬元生產(chǎn)A種設(shè)備,36萬元生產(chǎn)B種設(shè)備,則可生產(chǎn)兩種設(shè)備共10臺.請解答下列問題:
(1)A、B兩種設(shè)備每臺的成本分別是多少萬元?
(2)若A,B兩種設(shè)備每臺的售價分別是6萬元,10萬元,公司決定生產(chǎn)兩種設(shè)備共60臺,計劃銷售后獲利不低于126萬元,且A種設(shè)備至少生產(chǎn)53臺,求該公司有幾種生產(chǎn)方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從甲地到乙地有兩條公路,一條是全長600km的普通公路,另一條是全長480km的高速公路,某客車在高速公路上行駛的平均速度比在普通公路上快45/ ,由高速公路從甲地到乙地所需的時間是由普通公路從甲地到乙地所需時間的一半,求該客車由高速公路從甲地到乙地所需的時間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com