已知:如圖,平行四邊形ABCD中,E、F分別是邊BC和AD上的點,且BE=DF,求證:AE=CF.

 

【答案】

證:∵四邊形ABCD是平行四邊形,∴AB=CD,∠B=∠D,又∵BE=DF,∴△ABE≌△CDF,∴AE=CF.  (其他證法也可)

【解析】根據(jù)平行四邊形的性質和已知條件證明△ABE≌△CDF,再利用全等三角形的性質:即可得到AE=CF.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(本題滿分6分)已知:如圖,E、F是平行四邊行ABCD的對角線AC上的兩點,AE=CF。

求證:(1)△ADF≌△CBE;(2)EB∥DF。

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本題滿分6分)已知:如圖,E、F是平行四邊行ABCD的對角線AC上的兩點,AE=CF。

求證:(1)△ADF≌△CBE;(2)EB∥DF。

查看答案和解析>>

科目:初中數(shù)學 來源:2010-2011學年江蘇省江陰市夏港中學九年級第二學期期中考試數(shù)學卷 題型:解答題

(本題滿分6分)已知:如圖,E、F是平行四邊行ABCD的對角線AC上的兩點,AE=CF。

求證:(1)△ADF≌△CBE;(2)EB∥DF。

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年山東省九年級上學期階段檢測數(shù)學卷(解析版) 題型:解答題

已知:如圖,E、F是平行四邊行ABCD的對角線AC上的兩點,AE=CF。

求證:(1)△ADF≌△CBE;(2)EB∥DF。

【解析】要證△ADF≌△CBE,因為AE=CF,則兩邊同時加上EF,得到AF=CE,又因為ABCD是平行四邊形,得出AD=CB,∠DAF=∠BCE,從而根據(jù)SAS推出兩三角形全等,由全等可得到∠DFA=∠BEC,所以得到DF∥EB

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011屆江蘇省江陰市九年級第二學期期中考試數(shù)學卷 題型:解答題

(本題滿分6分)已知:如圖,E、F是平行四邊行ABCD的對角線AC上的兩點,AE=CF。

求證:(1)△ADF≌△CBE;(2)EB∥DF。

 

查看答案和解析>>

同步練習冊答案