(2010•聊城)如圖,點P是矩形ABCD的邊AD上的一個動點,矩形的兩條邊AB、BC的長分別為3和4,那么點P到矩形的兩條對角線AC和BD的距離之和是( )

A.
B.
C.
D.不確定
【答案】分析:過P點作PE⊥AC,PF⊥BD,由矩形的性質(zhì)可證△PEA∽△CDA和△PFD∽△BAD,根據(jù),即,兩式相加得PE+PF=,即為點P到矩形的兩條對角線AC和BD的距離之和.
解答:法1:
解:過P點作PE⊥AC,PF⊥BD
∵矩形ABCD
∴AD⊥CD
∴△PEA∽△CDA

∵AC=BD==5
…①
同理:△PFD∽△BAD

…②
∴①+②得:
∴PE+PF=
即點P到矩形的兩條對角線AC和BD的距離之和是
法2:
連接OP.
∵AD=4,CD=3,
∴AC==5,
又∵矩形的對角線相等且互相平分,
∴AO=OD=2.5cm,
∴S△APO+S△POD=×2.5•PE+×2.5•PF=×2.5(PE+PF)=×3×4,
∴PE+PF=
點評:根據(jù)矩形的性質(zhì),結(jié)合相似三角形求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2010•聊城)如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)在拋物線的對稱軸x=1上求一點M,使點M到點A的距離與到點C的距離之和最小,并求出此時點M的坐標;
(3)設(shè)點P為拋物線的對稱軸x=1上的一動點,求使∠PCB=90°的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(01)(解析版) 題型:選擇題

(2010•聊城)如圖,過點Q(0,3.5)的一次函數(shù)的圖象與正比例函數(shù)y=2x的圖象相交于點P,能表示這個一次函數(shù)圖象的方程是( )

A.3x-2y+3.5=0
B.3x-2y-3.5=0
C.3x-2y+7=0
D.3x+2y-7=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年山東省聊城市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•聊城)如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)在拋物線的對稱軸x=1上求一點M,使點M到點A的距離與到點C的距離之和最小,并求出此時點M的坐標;
(3)設(shè)點P為拋物線的對稱軸x=1上的一動點,求使∠PCB=90°的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年山東省聊城市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•聊城)如圖,過點Q(0,3.5)的一次函數(shù)的圖象與正比例函數(shù)y=2x的圖象相交于點P,能表示這個一次函數(shù)圖象的方程是( )

A.3x-2y+3.5=0
B.3x-2y-3.5=0
C.3x-2y+7=0
D.3x+2y-7=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《圖形的旋轉(zhuǎn)》(03)(解析版) 題型:填空題

(2010•聊城)如圖,在Rt△ABC中,∠ACB=90°,∠BAC=60°,AB=6,Rt△AB'C'可以看作是由Rt△ABC繞點A逆時針方向旋轉(zhuǎn)60°得到的,則線段B′C的長為   

查看答案和解析>>

同步練習(xí)冊答案