(2013•平谷區(qū)一模)如圖,在直角坐標系中,已知直線y=
1
2
x+1
與y軸交于點A,與x軸交于點B,以線段BC為邊向上作正方形ABCD.
(1)點C的坐標為
(-3,2)
(-3,2)
,點D的坐標為
(-1,3)
(-1,3)
;
(2)若拋物線y=ax2+bx+2(a≠0)經過C、D兩點,求該拋物線的解析式;
(3)若正方形以每秒
5
個單位長度的速度沿射線BA向上平移,直至正方形的頂點C落在y軸上時,正方形停止運動.在運動過程中,設正方形落在y軸右側部分的面積為s,求s關于平移時間t(秒)的函數(shù)關系式,并寫出相應自變量t的取值范圍.
分析:(1)構造全等三角形,由全等三角形對應線段之間的相等關系,求出點C、點D的坐標;
(2)將C、D兩點的坐標代入y=ax2+bx+2,利用待定系數(shù)法求出拋物線的解析式;
(3)為求s的表達式,需要識別正方形(與拋物線)的運動過程.正方形的平移,從開始到結束,總共歷時
3
2
秒,期間可以劃分成三個階段:當0<t≤
1
2
時,對應圖2;當
1
2
<t≤1時,對應圖3;當1<t≤
3
2
時,對應圖4.每個階段的表達式不同,請對照圖形認真思考.
解答:解:(1)∵y=
1
2
x+1,
∴當x=0時,y=1,即A點坐標為(0,1),
當y=0時,x=-2,即B點坐標為(-2,0).
如圖1,過D點作DH⊥y軸于H,過C點作CG⊥x軸于G.
易證△ADH≌△BAO,∴DH=OA=1,AH=OB=2,∴D(-1,3);
同理△CBG≌△BAO,∴BG=OA=1,CG=OB=2,∴C(-3,2).
故答案為(-3,2),(-1,3);

(2)將C(-3,2)、D(-1,3)兩點的坐標代入y=ax2+bx+2,
9a-3b+2=2
a-b+2=3
,解得 
a=-
1
2
b=-
3
2

∴y=-
1
2
x2-
3
2
x+2;

(3)①當點D運動到y(tǒng)軸上時,t=
1
2

當0<t≤
1
2
時,如圖2,設D′A′交y軸于點F.
∵tan∠BAO=
OB
OA
=2,又∵∠BAO=∠FAA′,
∴tan∠FAA′=2,即
FA′
AA′
=2,
∵AA′=
5
t,∴FA′=2
5
t.?
∴S△AA′F?=
1
2
AA′•FA′=
1
2
×
5
t×2
5
t=5t2;?
當點B運動到點C時,t=1.
1
2
<t≤1時,如圖3,設D′C′交y軸于點G,過G作GH⊥B′A′于H.
在Rt△BOA中,BA=
22+12
=
5
,
∴GH=
5
,∴AH=
1
2
GH=
5
2
,
∵AA′=
5
t,∴HA′=
5
t-
5
2
,∴GD′=
5
t-
5
2
,
∴S梯形AA′D′G?=
1
2
5
t-
5
2
+
5
t)
5
=5t-
5
4

當點E運動到y(tǒng)軸上時,t=
3
2

③當1<t≤
3
2
時,如圖4,設D′E′、E′B′分別交y軸于點M、N.
∵AA′=
5
t,B′A′=
5

∴AB′=
5
t-
5
,?∴B′N=2AB′=2
5
t-2
5

∵B′C′=
5
,∴C′N=B′C′-B′N=3
5
-2
5
t,
∴C′M=
1
2
C′N=
1
2
(3
5
-2
5
t),
∴S△MNC′=
1
2
(3
5
-2
5
t)•
1
2
(3
5
-2
5
t)=5t2-15t+
45
4
,
∴S五邊形B′A′D′MN?=S正方形B′A′D′C′?-S△MNC′=(
5
2-(5t2-15t+
45
4
)=-5t2+15t-
25
4

綜上所述,S與x的函數(shù)關系式為:
當0<t≤
1
2
時,S=5t2;
1
2
<t≤1時,S=5t-
5
4
;
當1<t≤
3
2
時,S=-5t2+15t-
25
4
點評:本題是非常典型的動線型綜合題,全面考查了初中數(shù)學代數(shù)幾何的多個重要知識點,包括:二次函數(shù)的圖象與性質、待定系數(shù)法求解析式、拋物線與幾何變換(平移)、相似三角形的判定與性質、全等三角形的判定與性質、正方形的性質等.難點在于第(3)問,識別正方形和拋物線平移過程的不同階段是關鍵所在.作為中考壓軸題,本題涉及考點眾多,計算復雜,因而難度很大,對考生綜合能力要求很高,具有很好的區(qū)分度.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•平谷區(qū)一模)北京市2013年4月份某一周天氣預報的日最高氣溫(單位:℃)分別為13,14,17,22,22,15,15,這組數(shù)據(jù)的眾數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•平谷區(qū)一模)如果分式
3x-1
的值為正數(shù),那么x的取值范圍是
x>1
x>1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•平谷區(qū)一模)如圖1、圖2、圖3,在△ABC中,分別以AB、AC為邊,向△ABC外作正三角形,正四邊形,正五邊形,BE、CD相交于點O.如圖4,AB、AD是以AB為邊向△ABC外所作正n邊形的一組鄰邊;AC、AE是以AC為邊向△ABC外所作正n(n為正整數(shù))邊形的一組鄰邊.BE、CD的延長相交于點O.圖1中∠BOC=
120
120
°;圖4中∠BOC=
360°
n
360°
n
°(用含n的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•平谷區(qū)一模)計算:(
1
2
)-1-20130+2sin60°-|-
12
|

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•平谷區(qū)一模)已知x2-2x-5=0,求(2x-1)2+(x+2)(x-2)-4x(x-
12
)
的值.

查看答案和解析>>

同步練習冊答案