(2008•蘭州)正方形網(wǎng)格中,∠AOB如圖放置,則cos∠AOB的值為( )

A.
B.
C.
D.2
【答案】分析:作EF⊥OB,則求cos∠AOB的值的問題就可以轉(zhuǎn)化為直角三角形邊的比的問題.
解答:解:如圖,作EF⊥OB,則EF=2,OF=1,由勾股定理得,OE=
∴cos∠AOB===
故選A.
點評:本題通過構造直角三角形,利用勾股定理和銳角三角函數(shù)的定義求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2008•蘭州)一座拱橋的輪廓是拋物線型(如圖1),拱高6m,跨度20m,相鄰兩支柱間的距離均為5m.
(1)將拋物線放在所給的直角坐標系中(如圖2),求拋物線的解析式;
(2)求支柱EF的長度;
(3)拱橋下地平面是雙向行車道(正中間是一條寬2m的隔離帶),其中的一條行車道能否并排行駛寬2m、高3m的三輛汽車(汽車間的間隔忽略不計)?請說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年云南省楚雄州雙柏縣中考數(shù)學模擬試卷(鄂嘉中學 初三數(shù)學組制)(解析版) 題型:解答題

(2008•蘭州)一座拱橋的輪廓是拋物線型(如圖1),拱高6m,跨度20m,相鄰兩支柱間的距離均為5m.
(1)將拋物線放在所給的直角坐標系中(如圖2),求拋物線的解析式;
(2)求支柱EF的長度;
(3)拱橋下地平面是雙向行車道(正中間是一條寬2m的隔離帶),其中的一條行車道能否并排行駛寬2m、高3m的三輛汽車(汽車間的間隔忽略不計)?請說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年甘肅省蘭州市中考數(shù)學試卷(解析版) 題型:解答題

(2008•蘭州)一座拱橋的輪廓是拋物線型(如圖1),拱高6m,跨度20m,相鄰兩支柱間的距離均為5m.
(1)將拋物線放在所給的直角坐標系中(如圖2),求拋物線的解析式;
(2)求支柱EF的長度;
(3)拱橋下地平面是雙向行車道(正中間是一條寬2m的隔離帶),其中的一條行車道能否并排行駛寬2m、高3m的三輛汽車(汽車間的間隔忽略不計)?請說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2008•蘭州)如圖1,OABC是一張放在平面直角坐標系中的矩形紙片,O為原點,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=5,OC=4.
(1)在OC邊上取一點D,將紙片沿AD翻折,使點O落在BC邊上的點E處,求D,E兩點的坐標;
(2)如圖2,若AE上有一動點P(不與A,E重合)自A點沿AE方向E點勻速運動,運動的速度為每秒1個單位長度,設運動的時間為t秒(0<t<5),過P點作ED的平行線交AD于點M,過點M作AE平行線交DE于點N.求四邊形PMNE的面積S與時間t之間的函數(shù)關系式;當t取何值時,s有最大值,最大值是多少?
(3)在(2)的條件下,當t為何值時,以A,M,E為頂點的三角形為等腰三角形,并求出相應的時刻點M的坐標?

查看答案和解析>>

科目:初中數(shù)學 來源:2009年浙江省杭州市蕭山區(qū)中考模擬數(shù)學試卷(回瀾初中 來鈺森)(解析版) 題型:解答題

(2008•蘭州)如圖1,OABC是一張放在平面直角坐標系中的矩形紙片,O為原點,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=5,OC=4.
(1)在OC邊上取一點D,將紙片沿AD翻折,使點O落在BC邊上的點E處,求D,E兩點的坐標;
(2)如圖2,若AE上有一動點P(不與A,E重合)自A點沿AE方向E點勻速運動,運動的速度為每秒1個單位長度,設運動的時間為t秒(0<t<5),過P點作ED的平行線交AD于點M,過點M作AE平行線交DE于點N.求四邊形PMNE的面積S與時間t之間的函數(shù)關系式;當t取何值時,s有最大值,最大值是多少?
(3)在(2)的條件下,當t為何值時,以A,M,E為頂點的三角形為等腰三角形,并求出相應的時刻點M的坐標?

查看答案和解析>>

同步練習冊答案