如圖,四邊形OABE中,∠AOE=∠BEO=90°,OA=3,OE==4,

   BE=1,點C,D是邊OE(與端點O、E不重合)上的兩個動點且CD=1.

1.求邊AB的長;

2.當△AOD與△BCE相似時,求OD的長;

3.連結(jié)AC與BD相交于點P,設(shè)OD=x,△PDC的面積記為y,求y關(guān)于x的函

數(shù)關(guān)系式,并寫出x的取值范圍.

 

 

1.AB=

2.

3.y=

解析:本題是考查的是解:(1)利用勾股定理求AB=…………(3分)

   (2)設(shè)OD=a,則CE=4-a-1=3-a

∵∠AOD=∠BEC=90o

   ①當時,△AOD∽△BEC

     ∴∴a=………(5分)

   ②當時,△AOD∽△CEB

     ∴此方程無實數(shù)根…………(7分)

綜上所述,OD=………………………(8分)

(3)作PH⊥OE于H。

    可得,△PHC∽△AOC,△PHD∽△BED

 ∴CH=PH(x+1)………………(9分)

   DH=PH(4-x)………………(10分)

∴CD= CH+DH=PH(x+1)+PH(4-x)=1

∴PH=

∴y=CD·PH=×1×=(0<x<3)

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•海門市模擬)如圖,四邊形OABE中,∠AOE=∠BEO=90°,OA=3,OE═4,BE=1,點C,D是邊OE(與端點O、E不重合)上的兩個動點且CD=1.
(1)求邊AB的長;
(2)當△AOD與△BCE相似時,求OD的長;
(3)連接AC與BD相交于點P,設(shè)OD=x,△PDC的面積記為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省八里店二中八年級下學(xué)期期中考試數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,四邊形OABE中,∠AOE=∠BEO=90°,OA=3, OE==4,BE=1,點C,D是邊OE(與端點O、E不重合)上的兩個動點且CD=1.

(1)求邊AB的長;
(2)當△AOD與△BCE相似時,求OD的長.
(3)連結(jié)AC與BD相交于點P,設(shè)OD=x,△PDC的面積記為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年江蘇省南通市海門市中考適應(yīng)性測試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,四邊形OABE中,∠AOE=∠BEO=90°,OA=3,OE═4,BE=1,點C,D是邊OE(與端點O、E不重合)上的兩個動點且CD=1.
(1)求邊AB的長;
(2)當△AOD與△BCE相似時,求OD的長;
(3)連接AC與BD相交于點P,設(shè)OD=x,△PDC的面積記為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014屆浙江省八年級下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,四邊形OABE中,∠AOE=∠BEO=90°,OA=3, OE==4,BE=1,點C,D是邊OE(與端點O、E不重合)上的兩個動點且CD=1.

(1)求邊AB的長;

(2)當△AOD與△BCE相似時,求OD的長.

(3)連結(jié)AC與BD相交于點P,設(shè)OD=x,△PDC的面積記為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊答案