【題目】如圖,已知矩形OABC中,OA=3,AB=4,雙曲線y=(k>0)與矩形兩邊AB、BC分別交于D、E,且BD=2AD

(1)求k的值和點E的坐標;

(2)點P是線段OC上的一個動點,是否存在點P,使∠APE=90°?若存在,求出此時點P的坐標,若不存在,請說明理由.

【答案】(1k="4," E4,1);(2)存在要求的點P,坐標為(1,0)或(3,0).

【解析】試題分析:(1)由矩形ABCD中,AB=4,BD=2AD,可得3AD=4,即可求得 AD的長,然后求得點D的坐標,即可求得K的值,繼而求得點 E的坐標;(2)首先假設存在要求的點P坐標為(m,0),OP=m,CP=4-m,∠APE=90,易證得△AOP∽△PCE,然后由相似三角形的對應邊成比例,求得m的值,繼而求得此時點P的坐標.

試題解析:(9分)(1AB=4,BD=2ADAB=AD+BD=AD+2AD=3AD=4,AD=,

OA=3,所以D3),D在雙曲線上,所以k=×3=4

四邊形OABC為矩形,∴AB=OC=4,E的橫坐標為4

x=4代入中,得y=1,所以E4,1).

2)假設存在要求的點P坐標為(m,0),OP=m,CP=4-m

∵∠APE=90,∴∠APO+∠EPC=90,∵∠APO+∠OAP=90, ∴∠EPC=∠OAP,

∵∠AOP=PCE=90,∴△AOP∽△PCE,

,解得:m=1m=3

所以,存在要求的點P,坐標為(1,0)或(3,0).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠B=55°,∠C=30°,分別以點A和點C為圓心,大于 AC的長為半徑畫弧,兩弧相交于點M,N,作直線MN,交BC于點D,連接AD,則∠BAD的度數(shù)為(

A.65°
B.60°
C.55°
D.45°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AD⊥BC于點D,DE⊥AB于點E,DF⊥AC于點F,下列結(jié)論:①∠BAD=∠CAD; ②AD上任意一點到AB,AC的距離相等;
③BD=CD; ④若點P在直線AD上,則PB=PC.其中正確的是( )

A.①
B.①②
C.①②③
D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C在⊙O上,點D在AB延長線上,且∠BCD=∠A.

(1)求證:DC是⊙O的切線;

(2)若∠A=30°,AC=2,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P為等邊三角形ABC內(nèi)部一點,△ABP旋轉(zhuǎn)后能與△CBP'重合.

(1)旋轉(zhuǎn)中心是哪一點?旋轉(zhuǎn)角是多少度?
(2)連接PP',△BPP'是什么三角形?并說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點P(a,b)在一次函數(shù)y=2x+1的圖象上,則4a﹣2b﹣1=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知am=32an=2,則am+2n=____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠ACB=90°,AC=6cm,BC=8cm,動點P從點C出發(fā),按C→B→A的路徑,以2cm每秒的速度運動,設運動時間為t秒,當t___________時,ACP是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC,∠ACB的平分線的交點P恰好在BC邊的高AD上,則△ABC一定是( )

A.直角三角形
B.等邊三角形
C.等腰三角形
D.等腰直角三角形

查看答案和解析>>

同步練習冊答案