如圖,在斜邊為1的等腰直角三角形OAB中,作內(nèi)接正方形A1B1C1D1;在等腰直角三角形OA1B1中,作內(nèi)接正方形A2B2C2D2;

在等腰直角三角形OA2B2中,作內(nèi)接正方形A3B3C3D3…依次作下去,則第n個正方形AnBnCnDn的邊長是(     )

A、         B、         C、       D、

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


如圖N2­5,含有30°的Rt△AOB的斜邊OAy軸上,且BA=3,∠AOB=30°,將Rt△AOB繞原點O順時針旋轉(zhuǎn)一定的角度,使直角頂點B落在x軸的正半軸上,得相應(yīng)的△AOB′,則A點運動的路程長是________.

   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


某中學(xué)為了讓學(xué)生的跳遠(yuǎn)在中考體育測試中取得滿意的成績,在鍛煉一個月后,學(xué)校對九年級一班的45名學(xué)生進(jìn)行測試,成績?nèi)缦卤恚?/p>

跳遠(yuǎn)成績(cm)

160

170

180

190

200

220

人數(shù)

3

9

6

9

15

3

這些運動員跳遠(yuǎn)成績的中位數(shù)和眾數(shù)分別是(  )

A. 190,200        B.9,9          C.15,9        D.185,200

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,已知AB是⊙O的直徑,點E是弧BC的中點,DE與BC交于點F,∠CEA=∠ODB.

(1)請判斷直線BD與⊙O的位置關(guān)系,并給出證明;

(2)當(dāng)AB=12,BF=時,求圖中陰影部分的面積。(結(jié)果保留2個有效數(shù)字,≈1.73,≈3.14).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,函數(shù)的圖象相交于點A(1,2)和點B,當(dāng)y1>y2時的變量x的取值范圍是(     )

A、x>1    B、-1<x<0    C、-1<x<0或x>1    D、x<-1或0<x<1

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


若關(guān)于t的不等式組,恰好有三個整數(shù)解,則關(guān)于x的一次函數(shù)的圖像與反比例函數(shù)的圖像的公共點的個數(shù)為             。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


類比、轉(zhuǎn)化、分類討論等思想方法和數(shù)學(xué)基本圖形在數(shù)學(xué)學(xué)習(xí)和解題中經(jīng)常用到,如下是一個案例,請補充完整。

原題:如圖1,在⊙O中,MN是直徑,ABMN于點B,CDMN于點D,AOC=90°,AB=3,CD=4,則BD=          

⑴嘗試探究:如圖2,在⊙O中,MN是直徑,AB⊥MN于點B,CDMN于點D,點EMN上,∠AEC=90°,AB=3,BD=8,BEDE=1:3,則CD=           (試寫出解答過程)。

⑵類比延伸:利用圖3,再探究,當(dāng)A、C兩點分別在直徑MN兩側(cè),且ABCD,ABMN于點BCDMN于點D,∠AOC=90°時,則線段AB、CDBD滿足的數(shù)量關(guān)系為       。

⑶拓展遷移:如圖4,在平面直角坐標(biāo)系中,拋物線經(jīng)過Am,6),Bn,1)兩點(其中0<m<3),且以y軸為對稱軸,且∠AOB=90°,①求mn的值;②當(dāng)S△AOB=10時,求拋物線的解析式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,Rt△ABC的直角邊BC在x軸正半軸上,斜邊AC上的中線BD的反向延長線交y軸負(fù)半軸于點E,雙曲線(x>0)的圖像經(jīng)過點A,若則k=__________

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,設(shè)三角形ABC為一等腰直角三角形,角ABC為直角,D為AC中點。以B為圓心,AB為半徑作一圓弧AFC,以D為中心,AD為半徑,作一半圓AGC,作正方形BDCE。月牙形AGCFA的面積與正方形BDCE的面積大小關(guān)系(    )

A、S月牙=S 正方形B、S月牙=S 正方形 C、S月牙=S 正方形 D、S月牙=2S 正方形

查看答案和解析>>

同步練習(xí)冊答案