如圖,等腰直角△ABC中,∠ABC=90°,點(diǎn)D在A(yíng)C上,將△ABD繞頂點(diǎn)B沿順時(shí)針?lè)较蛐?0°后得到△CBE.
(1)求∠DCE的度數(shù);
(2)當(dāng)AB=10,AD:DC=2:3時(shí),求DE的長(zhǎng).
分析:(1)根據(jù)等腰直角三角形的性質(zhì)得∠ACB=∠A=45°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得∠BCE=∠A=45°,于是得到∠DCE=∠ACB+∠BCE=90°;
(2)根據(jù)等腰直角三角形的性質(zhì)得AC=
2
AB=10
2
,再利用AD:DC=2:3得到AD=4
2
,DC=6
2
,則根據(jù)旋轉(zhuǎn)的性質(zhì)得CE=AD=4
2
,然后根據(jù)勾股定理計(jì)算BE.
解答:解:(1)∵△ABC為等腰直角三角形,
∴∠ACB=∠A=45°,
∵△ABD繞頂點(diǎn)B沿順時(shí)針?lè)较蛐?0°后得到△CBE,
∴∠BCE=∠A=45°,
∴∠DCE=∠ACB+∠BCE=90°;

(2)∵△ABC為等腰直角三角形,
∴AC=
2
AB=10
2
,
∵AD:DC=2:3,
∴AD=
2
5
AC=4
2
,DC=
3
5
AC=6
2
,
∵△ABD繞頂點(diǎn)B沿順時(shí)針?lè)较蛐?0°后得到△CBE,
∴CE=AD=4
2

在Rt△DCE中,DE=
(4
2
)2+(6
2
)2
=2
26
點(diǎn)評(píng):本題考查了旋轉(zhuǎn)的性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線(xiàn)段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了等腰直角三角形性質(zhì)以及勾股定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,等腰直角三角形AOB的面積為S1,以點(diǎn)O為圓心,OA為半徑的弧與以AB為直徑的半圓圍成的圖形的面積為S2,則S1與S2的關(guān)系是(  )
A、S1>S2B、S1<S2C、S1=S2D、S1≥S2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,等腰直角三角形ABC中,∠C=90°,AD為∠CAB的平分線(xiàn),DE⊥AB于E,AC=4,則△BDE的周長(zhǎng)為( 。
A、4
B、6
C、4
2
D、4
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鎮(zhèn)江模擬)如圖,等腰直角三角形ABC中,AC=BC>3,點(diǎn)M在A(yíng)C上,點(diǎn)N在CB的延長(zhǎng)線(xiàn)上,MN交AB于點(diǎn)O,且AM=BN=3,則S△AMO與S△BNO的差是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,等腰直角三角形△ABC中,∠ACB=90°,點(diǎn)D是BC的中點(diǎn),CE⊥AD于點(diǎn)F交AB于點(diǎn)E,CH是AB上的高交AD于點(diǎn)G.
(1)找出圖中的全等三角形;
(2)找出與∠ADC相等的角,并請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案