【題目】在平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),平行于x軸的直線與拋物線L:y=ax2相交于A,B兩點(diǎn)(點(diǎn)B在第一象限),點(diǎn)D在AB的延長線上.
(1)已知a=1,點(diǎn)B的縱坐標(biāo)為2.
①如圖1,向右平移拋物線L使該拋物線過點(diǎn)B,與AB的延長線交于點(diǎn)C,求AC的長.
②如圖2,若BD=AB,過點(diǎn)B,D的拋物線L2,其頂點(diǎn)M在x軸上,求該拋物線的函數(shù)表達(dá)式.
(2)如圖3,若BD=AB,過O,B,D三點(diǎn)的拋物線L3,頂點(diǎn)為P,對應(yīng)函數(shù)的二次項(xiàng)系數(shù)為a3,過點(diǎn)P作PE∥x軸,交拋物線L于E,F(xiàn)兩點(diǎn),求的值,并直接寫出的值.
【答案】(1)①;②y=4(x﹣)2;(2);
【解析】試題分析:(1)①根據(jù)函數(shù)解析式求出點(diǎn)A、B的坐標(biāo),求出AC的長;
②作拋物線L2的對稱軸與AD相交于點(diǎn)N,根據(jù)拋物線的軸對稱性求出OM,利用待定系數(shù)法求出拋物線的函數(shù)表達(dá)式;
(2)過點(diǎn)B作BK⊥x軸于點(diǎn)K,設(shè)OK=t,得到OG=4t,利用待定系數(shù)法求出拋物線的函數(shù)表達(dá)式,根據(jù)拋物線過點(diǎn)B(t,at2),求出的值,根據(jù)拋物線上點(diǎn)的坐標(biāo)特征求出的值.
試題解析:(1)①二次函數(shù)y=x2,當(dāng)y=2時(shí),2=x2,
解得x1=,x2=-,
∴AB=2.
∵平移得到的拋物線L1經(jīng)過點(diǎn)B,
∴BC=AB=2,
∴AC=4.
②作拋物線L2的對稱軸與AD相交于點(diǎn)N,如圖2,
根據(jù)拋物線的軸對稱性,得BN=DB=,
∴OM=.
設(shè)拋物線L2的函數(shù)表達(dá)式為y=a(x-)2,
由①得,B點(diǎn)的坐標(biāo)為(,2),
∴2=a(-)2,
解得a=4.
拋物線L2的函數(shù)表達(dá)式為y=4(x-)2;
(2)如圖3,拋物線L3與x軸交于點(diǎn)G,其對稱軸與x軸交于點(diǎn)Q,
過點(diǎn)B作BK⊥x軸于點(diǎn)K,
設(shè)OK=t,則AB=BD=2t,點(diǎn)B的坐標(biāo)為(t,at2),
根據(jù)拋物線的軸對稱性,得OQ=2t,OG=2OQ=4t.
設(shè)拋物線L3的函數(shù)表達(dá)式為y=a3x(x-4t),
∵該拋物線過點(diǎn)B(t,at2),
∴at2=a3t(t-4t),
∵t≠0,
∴,
由題意得,點(diǎn)P的坐標(biāo)為(2t,-4a3t2),
則-4a3t2=ax2,
解得,x1=-t,x2=t,
EF=t,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若整式(2x2+mx﹣12)﹣2(nx2﹣3x+8)的結(jié)果中不含x項(xiàng),x2項(xiàng),則m2+n2=____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】買一個(gè)足球需要m元,買一個(gè)籃球需要n元,則買4個(gè)足球和7個(gè)籃球共需要多少元( )
A.4m+7nB.28mnC.7m+4nD.11mn
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)P、Q分別是等邊△ABC邊AB、BC上的動點(diǎn)(端點(diǎn)除外),點(diǎn)P從頂點(diǎn)A、點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的運(yùn)動速度相同,連接AQ、CP交于點(diǎn)M.
(1)求證:△ABQ≌△CAP;
(2)當(dāng)點(diǎn)P、Q分別在AB、BC邊上運(yùn)動時(shí),∠QMC變化嗎?若變化,請說明理由;若不變,求出它的度數(shù).
(3)如圖2,若點(diǎn)P、Q在運(yùn)動到終點(diǎn)后繼續(xù)在射線AB、BC上運(yùn)動,直線AQ、CP交點(diǎn)為M,則∠QMC變化嗎?若變化,請說明理由;若不變,直接寫出它的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式:
①42﹣12=3×5;
②52﹣22=3×7;
③62﹣32=3×9;
④72﹣42=3×11;
…
則第n(n是正整數(shù))個(gè)等式為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com