【題目】夏季來臨,商場準備購進甲、乙兩種空調(diào)已知甲種空調(diào)每臺進價比乙種空調(diào)多500元,用40000元購進甲種空調(diào)的數(shù)量與用30000元購進乙種空調(diào)的數(shù)量相同請解答下列問題:
求甲、乙兩種空調(diào)每臺的進價;
若甲種空調(diào)每臺售價2500元,乙種空調(diào)每臺售價1800元,商場欲同時購進兩種空調(diào)20臺,且全部售出,請寫出所獲利潤元與甲種空調(diào)臺之間的函數(shù)關系式;
在的條件下,若商場計劃用不超過36000元購進空調(diào),且甲種空調(diào)至少購進10臺,并將所獲得的最大利潤全部用于為某敬老院購買1100元臺的A型按摩器和700元臺的B型按摩器直接寫出購買按摩器的方案.
【答案】(1) 甲、乙兩種空調(diào)每臺進價分別為2000元,1500元;(2)y=200x+6000;(3)兩種購買方案:A型0臺,B型12臺或A型7臺,B型1臺.
【解析】
(1)根據(jù)題意可以列出相應的方程,從而可以分別求得甲、乙兩種空調(diào)每臺的進價,注意分式方程要檢驗;
(2)根據(jù)題意和(1)中的答案可以得到所獲利潤y(元)與甲種空調(diào)x(臺)之間的函數(shù)關系式;
(3)根據(jù)商場計劃用不超過36000元購進空調(diào)共20臺,可以求得x的取值范圍,從而可以求得所能獲得的最大利潤.
設乙種空調(diào)每臺進價為x元,則甲種空調(diào)每臺進價為元,
根據(jù)題意得:,
去分母得:,
解得:,
經(jīng)檢驗是分式方程的解,且,
則甲、乙兩種空調(diào)每臺進價分別為2000元,1500元;
根據(jù)題意得:;
設購買甲種空調(diào)n臺,則購買乙種空調(diào)臺,
根據(jù)題意得:,且,
解得:,
當時,最大利潤為8400元,
設購買A型按摩器a臺,購買B型按摩器b臺,則,
有兩種購買方案:型0臺,B型12臺;型7臺,B型1臺.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,從一個建筑物的A處測得對面樓BC的頂部B的仰角為32°,底部C的俯角為45°,觀測點與樓的水平距離AD為31m,樓BC的高度大約為多少?(結果取整數(shù)).(參考數(shù)據(jù):sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】暑假期間,某學校計劃用彩色的地面磚鋪設教學樓門前一塊矩形操場ABCD的地面.已知這個矩形操場地面的長為100m,寬為80m,圖案設計如圖所示:操場的四角為小正方形,陰影部分為四個矩形,四個矩形的寬都為小正方形的邊長,在實際鋪設的過程總,陰影部分鋪紅色地面磚,其余部分鋪灰色地面磚.
(1)如果操場上鋪灰色地面磚的面積是鋪紅色地面磚面積的4倍,那么操場四角的每個小正方形邊長是多少米?
(2)如果灰色地面磚的價格為每平方米30元,紅色地面磚的價格為每平方米20元,學,F(xiàn)有15萬元資金,問這些資金是否能購買所需的全部地面磚?如果能購買所學的全部地面磚,則剩余資金是多少元?如果不能購買所需的全部地面磚,教育局還應該至少給學校解決多少資金?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,DF⊥AB,垂足為F,DE=DG,△ADG和△AED的面積分別為48和36,求△EDF的面積________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,正比例函數(shù)y=x的圖象與一次函數(shù)y=kx﹣k的圖象的交點坐標為A(m,2).
(1)求m的值和一次函數(shù)的解析式;
(2)設一次函數(shù)y=kx﹣k的圖象與y軸交于點B,求△AOB的面積;
(3)直接寫出使函數(shù)y=kx﹣k的值大于函數(shù)y=x的值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某蔬菜經(jīng)銷商去蔬菜生產(chǎn)基地批發(fā)某種蔬菜,已知這種蔬菜的批發(fā)量在20千克~60千克之間(含20千克和60千克)時,每千克批發(fā)價是5元;若超過60千克時,批發(fā)的這種蔬菜全部打八折,但批發(fā)總金額不得少于300元.
(1)根據(jù)題意,填寫如表:
蔬菜的批發(fā)量(千克) | … | 25 | 60 | 75 | 90 | … |
所付的金額(元) | … | 125 | 300 | … |
(2)經(jīng)調(diào)查,該蔬菜經(jīng)銷商銷售該種蔬菜的日銷售量y(千克)與零售價x(元/千克)是一次函數(shù)關系,其圖象如圖,求出y與x之間的函數(shù)關系式;
(3)若該蔬菜經(jīng)銷商每日銷售此種蔬菜不低于75千克,且當日零售價不變,那么零售價定為多少時,該經(jīng)銷商銷售此種蔬菜的當日利潤最大?最大利潤為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c(a≠0)的頂點為B(2,1),且過點A(0,2),直線y=x與拋物線交于點D,E(點E在對稱軸的右側),拋物線的對稱軸交直線y=x于點C,交x軸于點G,EF⊥x軸,垂足為F,點P在拋物線上,且位于對稱軸的右側,PQ⊥x軸,垂足為點Q,△PCQ為等邊三角形
(1)求該拋物線的解析式;
(2)求點P的坐標;
(3)求證:CE=EF;
(4)連接PE,在x軸上點Q的右側是否存在一點M,使△CQM與△CPE全等?若存在,試求出點M的坐標;若不存在,請說明理由.[注:3+2 =( +1)2].
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l1的解析表達式為:y=﹣3x+3,且l1與x軸交于點D,直線l2經(jīng)過點A、B,直線l1,l2交于點C.
(1)求點D的坐標;
(2)求直線l2的解析表達式;
(3)求△ADC的面積;
(4)在l2上存在異于點C的另一點P,使得△ADP與△ADC面積相等,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,△ADF和△BCE中,∠A=∠B,點D,E,F(xiàn),C在同一直線上,有如下三個關系式:①.AD=BC;②.DE=CF;③.BE∥AF.
⑴.請用其中兩個關系式作為條件,另一個作為結論,寫出所有正確的結論.
⑵.選擇(1)中你寫出的一個正確結論,說明它正確的理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com