【題目】某區(qū)在實施居民用水額定管理前,對居民生活用水情況進行了調查,下表是通過簡單隨機抽樣獲得的50個家庭去年月平均用水量(單位:噸),并將調查數(shù)據(jù)進行如下整理:

4.7 2.1 3.1 2.3 5.2 2.8 7.3 4.3 4.8 6.7

4.5 5.1 6.5 8.9 2.2 4.5 3.2 3.2 4.5 3.5

3.5 3.5 3.6 4.9 3.7 3.8 5.6 5.5 5.9 6.2

5.7 3.9 4.0 4.0 7.0 3.7 9.5 4.2 6.4 3.5

4.5 4.5 4.6 5.4 5.6 6.6 5.8 4.5 6.2 7.5

頻數(shù)分布表

分組

劃記

頻數(shù)

2.0x≤3.5

正正

11

3.5x≤5.0


19

5.0x≤6.5



6.5x≤8.0



8.0x≤9.5


2

合計


50

1)把上面頻數(shù)分布表和頻數(shù)分布直方圖補充完整;

2)從直方圖中你能得到什么信息?(寫出兩條即可);

3)為了鼓勵節(jié)約用水,要確定一個用水量的標準,超出這個標準的部分按1.5倍價格收費,若要使60%的家庭收費不受影響,你覺得家庭月均用水量應該定為多少?為什么?

【答案】詳見解析

【解析】

1)根據(jù)題中給出的50個數(shù)據(jù),從中分別找出5.0x≤6.56.5x≤8.0的個數(shù),進行劃記,得到對應的頻數(shù),進而完成頻數(shù)分布表和頻數(shù)分布直方圖。

2)本題答案不唯一.例如:從直方圖可以看出:居民月平均用水量大部分在2.06.5之間;居民月平均用水量在3.5x≤5.0范圍內的最多,有19戶。

3)由于50×60%=30,所以為了鼓勵節(jié)約用水,要使60%的家庭收費不受影響,即要使30戶的家庭收費不受影響,而11+19=30,故家庭月均用水量應該定為5噸。

解:(1)頻數(shù)分布表如下:

分組

劃記

頻數(shù)

2.0x≤3.5

正正

11

3.5x≤5.0


19

5.0x≤6.5


13

6.5x≤8.0


5

8.0x≤9.5


2

合計


50

頻數(shù)分布直方圖如下:

2)從直方圖可以看出:

居民月平均用水量大部分在2.06.5之間;

居民月平均用水量在3.5x≤5.0范圍內的最多,有19戶。

3)要使60%的家庭收費不受影響,你覺得家庭月均用水量應該定為5噸,因為月平均用水量不超過5噸的有30戶,30÷50=60%

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,下列條件中,不能證明ABC≌△DCB ( 。

A. AB=DC,AC=DB B. AB=DC,ABC=DCB

C. DB=AC,DBC=ACB D. DC=AB,DBC=ACB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知長方形ABCD中,AD=6cm,AB=4cm,點EAD的中點.若點P在線段AB上以1cm/s的速度由點A向點B運動,同時,點Q在線段BC上由點B向點C運動.

(1)若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,△AEP與△BPQ是否全等,請說明理由,并直接寫出此時線段PE和線段PQ的位置關系;

(2)若點Q的運動速度與點P的運動速度相等,運動時間為t秒,設△PEQ的面積為Scm2,請用t的代數(shù)式表示S;

(3)若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△AEP與△BPQ全等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某校學生的身高情況,隨機抽取該校若干男生、女生進行抽樣調查.已知抽取的樣本中,男生、女生人數(shù)相同,利用所得數(shù)據(jù)繪制如下統(tǒng)計表和統(tǒng)計圖(如圖20-3-2所示):

身高情況分組表(單位:cm)

組別

身高

A

x<155

B

155≤x<160

C

160≤x<165

D

165≤x<170

E

x≥170

根據(jù)圖表提供的信息,回答下列問題:

(1)樣本中,男生身高的眾數(shù)在___________,中位數(shù)在___________組;

(2)樣本中,女生身高在E組的有___________人;

(3)已知該校共有男生400人、女生380,請估計身高在160≤x<170范圍內的學生約有多少人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解不等式組 并在數(shù)軸上表示解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了迎接新中國成立六十周年,某中學九年級組織了《祖國在我心》征文比賽,共收到一班、二班、三班、四班參賽學生的文章共100(參賽學生每人只交一篇),下面扇形統(tǒng)計圖描述了各班參賽學生占總人數(shù)的百分比情況(尚不完整).比賽一、二等獎若干,結果全年級25人獲獎,其中三班參賽學生的獲獎率為20%,一、二、三、四班獲獎人數(shù)的比為67a5.

(1)填空:①四班有______人參賽,α=______°.

a=______,各班獲獎學生數(shù)的眾數(shù)是______.

(2)獲一等獎、二等獎的學生每人分別得到價值100元、60元的學習用品,購買這批獎品共用去1900元,問一等獎、二等獎的學生人數(shù)分別是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)問題如圖1,在四邊形ABCD中,點P為AB上一點,∠DPC=∠A=∠B=90°

(1)求證:ADBC=APBP
(2)探究如圖2,在四邊形ABCD中,點P為AB上一點,當∠DPC=∠A=∠B=θ時,上述結論是否依然成立?說明理由.

(3)應用請利用(1)(2)獲得的經(jīng)驗解決問題:
如圖3,在△ABD中,AB=6,AD=BD=5,點P以每秒1個單位長度的速度,由點A出發(fā),沿邊AB向點B運動,且滿足∠DPC=∠A,設點P的運動時間為t(秒),當以D為圓心,以DC為半徑的圓與AB相切時,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】麗商場銷售A、B兩種商品,售出1件A種商品和4件B種商品所得利潤為600元;售出3件A種商品和5件B種商品所得利潤為1100元.

(1)求每件A種商品和每件B種商品售出后所得利潤分別為多少元?

(2)由于需求量大,A、B兩種商品很快售完,威麗商場決定再一次購進A、B兩種商品共34件,如果將這34件商品全部售完后所得利潤不低于4000元,那么麗商場至少需購進多少件A種商品?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=BC=4,D是AB的中點,點E、F分別在AC、BC邊上運動(點E不與點A、C重合),且保持AE=CF,連接DE、DF、EF.在此運動變化的過程中,有下列結論:
①△DFE是等腰直角三角形;
②四邊形CEDF不可能為正方形;
③四邊形CEDF的面積隨點E位置的改變而發(fā)生變化;
④點C到線段EF的最大距離為
其中正確結論的個數(shù)是(

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

同步練習冊答案