將邊長(zhǎng)分別為
2
、2
2
、3
2
、4
2
、…的正方形的面積分別記作S1、S2、S3、S4,…,計(jì)算S2-S1,S3-S2,S4-S3,….若邊長(zhǎng)為n•
2
(n為正整數(shù))的正方形面積記作Sn,根據(jù)你的計(jì)算結(jié)果,猜想Sn-Sn-1=______.(用含n的式子表示)
S2-S1=(2
2
2-(
2
2=2×(22-12)=6;
S3-S2=(3
2
2-(2
2
2=2×(32-22)=10;
S4-S3=(4
2
2-(3
2
2=2×(42-32)=14;

Sn-Sn-1=(n
2
2-[(n-1)
2
]2=2×[n2-(n-1)2]=4n-2.
故答案為:4n-2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,正方形ABCD中,E、F、G、H分別是各邊中點(diǎn),如果陰影部分的面積是5cm2,那么AB的長(zhǎng)度是______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四邊形ABCD中,點(diǎn)E是線段AD上的任意一點(diǎn)(E與A,D不重合),G,F(xiàn),H分別是BE,BC,CE的中點(diǎn).
(1)證明:四邊形EGFH是平行四邊形;
(2)在(1)的條件下,若EF⊥BC,且EF=
1
2
BC,證明:平行四邊形EGFH是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,已知∠EOF,點(diǎn)B、C在射線OF上,四邊形ABCD是平行四邊形,AC、BD相交于點(diǎn)M,連接OM.
(1)當(dāng)OM⊥AC時(shí),求證:OA=OC.
(2)如圖2,當(dāng)∠EOF=45°時(shí),且四邊形ABCD是邊長(zhǎng)為a的正方形時(shí),求OM的長(zhǎng).(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列命題,真命題是(  )
A.如圖,如果OP平分∠AOB,那么,PA=PB
B.三角形的一個(gè)外角大于它的一個(gè)內(nèi)角
C.如果兩條直線沒有公共點(diǎn),那么這兩條直線互相平行
D.有一組鄰邊相等的矩形是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在正方形ABCD中,E是AB上一點(diǎn),F(xiàn)是AD延長(zhǎng)線上一點(diǎn),且DF=BE.
(1)求證:CE=CF;
(2)若G在AD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?
(3)在(1)(2)條件下,若AB=BC=12,BE=4,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知在邊長(zhǎng)為1的正方形ABCD中,以D為圓心、DA為半徑畫弧
AC
,E是AB上的一動(dòng)點(diǎn),過E作
AC
的切線交BC于點(diǎn)F,切點(diǎn)為G,連GC,過G作GC的垂線交AD與N,交CD的延長(zhǎng)線于M.
(1)求證:AE=EG,GF=FC;
(2)設(shè)AE=x,用含x的代數(shù)式表示FC的長(zhǎng);
(3)在圖中,除GF以外,是否還存在與FC相等的線段,是哪些?試證明或說(shuō)明理由;
(4)當(dāng)△GDN是等腰三角形時(shí),求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在正方形ABCD內(nèi)有兩條相交線段MN、EF,M、N、E、F分別在邊AB、CD、AD、BC上,若MN⊥EF,MN=10cm,則EF=______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,正方形ABCD,M是BC上一點(diǎn),連接AM,作AM的垂直平分線GH交AB于點(diǎn)G,交CD于點(diǎn)H,已知AM=10cm,求GH的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案