【題目】如圖,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度數(shù).
【答案】解:∵AB∥CD,
∴∠B+∠BCE=180°(兩直線平行同旁內(nèi)角互補(bǔ)),
∵∠B=65°,
∴∠BCE=115°,
∵CM平分∠BCE,
∴∠ECM= ∠BCE=57.5°,
∵∠ECM+∠MCN+∠NCD=180°,∠MCN=90°,
∴∠NCD=180°﹣∠ECM﹣∠MCN=180°﹣57.5°﹣90°=32.5°
【解析】利用平行線間同旁內(nèi)角互補(bǔ)、余角、平分線的性質(zhì)可以解決.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解角的平分線的相關(guān)知識(shí),掌握從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線,以及對(duì)平行線的性質(zhì)的理解,了解兩直線平行,同位角相等;兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種型號(hào)的電視機(jī)經(jīng)過(guò)連續(xù)兩次降價(jià),每臺(tái)售價(jià)由原來(lái)的1500元,降到了980元,設(shè)平均每次降價(jià)的百分率為x,則下列方程中正確的是( )
A.1500(1﹣x)2=980
B.1500(1+x)2=980
C.980(1﹣x)2=1500
D.980(1+x)2=1500
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D是BC邊上的一點(diǎn),∠B=50°,∠BAD=30°,將△ABD沿AD折疊得到△AED,AE與BC交于點(diǎn)F.則∠EDF的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一平面直角坐標(biāo)系內(nèi)畫一次函數(shù)y1=﹣x+4和y2=2x﹣5的圖象,根據(jù)圖象求:
(1)方程﹣x+4=2x﹣5的解;
(2)當(dāng)x取何值時(shí),y1>y2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將拋物線y=﹣x2+1向上平移2個(gè)單位,得到的拋物線表達(dá)式為( )
A.y=﹣(x+2)2
B.y=﹣(x﹣2)2
C.y=﹣x2﹣1
D.y=﹣x2+3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將△ABC沿著過(guò)AB中點(diǎn)D的直線折疊,使點(diǎn)A落在BC邊上的A2處,稱為第1次操作,折痕DE到BC的距離記為h1;還原紙片后,再將△ADE沿著過(guò)AD中點(diǎn)D1的直線折疊,使點(diǎn)A落在DE邊上的A2處,稱為第2次操作,折痕D1E1到BC的距離記為h2;按上述方法不斷操作下去…,經(jīng)過(guò)第2015次操作后得到的折痕D2014E2014到BC的距離記為h2015,到BC的距離記為h2015.若h1=1,則h2015的值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.球的截面可能是橢圓
B.組成長(zhǎng)方體的各個(gè)面中不能有正方形
C.五棱柱一共有15條棱
D.正方體的截面可能是七邊形
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com