如圖,在△ABC中,EF∥BC,AE=2BE,則△AEF與梯形BCFE的面積比   
【答案】分析:先證△AEF∽△ABC,相似比是2:3,根據(jù)相似三角形性質(zhì),可求面積的比是4:9,故可求△AEF與梯形BCFE的面積比.
解答:解:AE=2BE,AB=3BE,則
根據(jù)EF∥BC,得到△AEF∽△ABC,相似比是2:3,
面積的比是相似比的平方,因而面積的比是4:9,
設(shè)△AEF的面積是4a,則△ABC的面積是9a,
則梯形BCFE的面積是5a,
因而△AEF與梯形BCFE的面積比4:5.
點評:本題考查對相似三角形性質(zhì)的理解,相似三角形面積的比等于相似比的平方.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案