28、如圖,已知四邊形ABCD是菱形,DE⊥AB,DF⊥BC,求證:△ADE≌△CDF.
分析:先利用菱形的性質(zhì)可求出一組對應(yīng)角相等,一組對應(yīng)邊相等,再結(jié)合已知條件中的垂直條件,又可得一組對應(yīng)角相等,從而利用AAS可證兩個三角形全等.
解答:證明:在△ADE和△CDF中,
∵四邊形ABCD是菱形,
∴∠A=∠C,AD=CD,(2分)
又DE⊥AB,DF⊥BC,
∴∠AED=∠CFD=90°,(4分)
∴△ADE≌△CDF.(6分)
點評:本題利用了菱形的性質(zhì)、全等三角形的判定.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖,已知四邊形ABCD是等腰梯形,AB=DC,AD∥BC,PB=PC.求證:PA=PD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知四邊形ABCD內(nèi)接于⊙O,A是
BDC
的中點,AE⊥AC于A,與⊙O及CB精英家教網(wǎng)的延長線分別交于點F、E,且
BF
=
AD
,EM切⊙O于M.
(1)求證:△ADC∽△EBA;
(2)求證:AC2=
1
2
BC•CE;
(3)如果AB=2,EM=3,求cot∠CAD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•梧州)如圖,已知:AB∥CD,BE⊥AD,垂足為點E,CF⊥AD,垂足為點F,并且AE=DF.
求證:四邊形BECF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖南常德市初中畢業(yè)學(xué)業(yè)考試數(shù)學(xué)試卷 題型:047

如圖,已知四邊形AB∥CD是菱形,DEAB,DFBC.求證△ADE≌△CDF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知四邊形AB∥CD是菱形,DE∥AB,DFBC.求證

 


查看答案和解析>>

同步練習(xí)冊答案