如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AE⊥CD,垂足為E,DA平分∠BDE.
(1)求證:AE是⊙O的切線;
(2)若AE=2,DE=1cm,求BD的長.
分析:(1)證明OA⊥AE就能得到AE是⊙O的切線;
(2)通過證明Rt△BAD∽Rt△AED,再利用對應(yīng)邊成比例關(guān)系從而求出⊙O半徑的長.
解答:(1)證明:連接OA.
∵AO=DO,
∴∠OAD=∠ODA.
∵DA平分∠BDE,
∴∠ODA=∠EDA,
∴∠OAD=∠EDA.
∵∠EAD+∠EDA=90°,
∴∠EAD+∠OAD=90°,即∠OAE=90°.
∴OA⊥AE,
∴AE是⊙O的切線.

(2)解:在直角△ADE中,AD=
AE2+DE2
=
5
cm.
∵BD是⊙O的直徑,
∴∠BAD=90°,
∵∠AED=90°,∠ADE=∠ADB,
∴Rt△BAD∽Rt△AED.
DE
AD
=
AD
BD

∴BD=
AD2
DE
=
5
1
=5cm.
點評:主要考查學(xué)生對相似三角形的判定及性質(zhì)的運用,及切線的求法等知識點的掌握情況.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設(shè)AC=2a,BD=2b,請推導(dǎo)這個四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案