如圖,矩形OABC的頂點A、C分別在x軸和y軸上,點B的坐標為(2,3).雙曲線y=(x>0)的圖象經過BC的中點D,且與AB交于點E,連接DE.
(1)求k的值及點E的坐標;
(2)若點F是OC邊上一點,且△FBC∽△DEB,求直線FB的解析式.

(1)k=3,點縱坐標為(2,);(2).

解析試題分析:(1)根據(jù)題意易知D(1,3),把D(1,3)代入y=,從而求出k=3;然后把E點的橫坐標代入y=,求出y的值,從而確定E點坐標;
(2)由(1)易求出BD、BE、BC的值,因為△FBC∽△DEB,根據(jù)相似三角形的性質,可求出DF的值,從而確定F點的坐標,根據(jù)待定系數(shù)法可求出FB的直線解析式.
試題解析:(1)在矩形OABC中, ∵B點坐標為(2,3),
∴BC邊中點D的坐標為(1,3)
又∵雙曲線y=的圖像經過點D(1,3)
,
∴k=3
∵E點在AB上,
∴E點的橫坐標為2.
又∵y=,經過點E,
∴E點縱坐標為,
∴E點縱坐標為(2,
(2)由(1)得,BD=1,BE=,BC=2,
∵△FBC∽△DEB,
,即.
,
,即點F的坐標為
設直線FB的解析式為,而直線FB經過B(2,3),F(xiàn)(0,
,解得
∴直線FB的解析式為
考點: 一次函數(shù)與反比例函數(shù)的綜合題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

畫出函數(shù)y=﹣x+1的圖象,結合圖象,回答下列問題.
在函數(shù)y=﹣x+1的圖象中:
(1)畫出函數(shù)圖象并寫出與x軸的交點坐標是 _________ ;
(2)隨著x的增大,y將 _________ (填“增大”或“減小”);
(3)當y取何值時,x<0? _________ 
(4)把它的圖象向下平移2個單位長度則得到的新的一次函數(shù)解析式是 _________ 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

張先生準備在沙坪壩購買一套小戶型商品房,他去某樓盤了解情況得知, 該戶型商品房的單價是8000元/,面積如圖所示(單位:米,衛(wèi)生間的寬未定,設寬為米),售房部為張先生提供了以下兩種優(yōu)惠方案:
方案一:整套房的單價是8000元/,其中廚房可免費贈送的面積;
方案二:整套房按原銷售總金額的9折出售.
(1)用表示方案一中購買一套該戶型商品房的總金額,用表示方案二中購買一套該戶型商品房的總金額,分別求出、的關系式;
(2)求取何值時,兩種優(yōu)惠方案的總金額一樣多?
(3)張先生因現(xiàn)金不夠,于2012年1月在建行借了9萬元住房貸款,貸款期限為6年,從開始貸款的下一個月起逐月償還,貸款月利率是0.5%,每月還款數(shù)額=平均每月應還的貸款本金數(shù)額+月利息,月利息=上月所剩貸款本金數(shù)額×月利率.
①張先生借款后第一個月應還款數(shù)額是多少元?
②假設貸款月利率不變,若張先生在借款后第是正整數(shù))個月的還款數(shù)額為P,請寫出P與之間的關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知一次函數(shù)y=kx+b,當x=2時,y=﹣3,當x=1時,y=﹣1.
(1)求一次函數(shù)的解析式;
(2)若該一次函數(shù)的圖形交x軸y軸分別于A、B兩點,求△ABO的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知某工廠計劃用庫存的302m3木料為某學校生產500套桌椅,供該校1250名學生使用,該廠生產的桌椅分為A,B兩種型號,有關數(shù)據(jù)如下:

桌椅型號
一套桌椅所坐學生人數(shù)(單位:人)
生產一套桌椅所需木材(單位:m3
一套桌椅的生產成本(單位:元)
一套桌椅的運費(單位:元)
A
2
0.5
100
2
B
3
0.7
120
4
 
設生產A型桌椅x(套),生產全部桌椅并運往該校的總費用(總費用=生產成本+運費)為y元.
(1)求y與x之間的關系式,并指出x的取值范圍;
(2)當總費用y最小時,求相應的x值及此時y的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系xOy中,一次函數(shù)y=ax+b的圖象與x軸相交于點A(-2,0),與y軸交于點C,與反比例函數(shù)在第一象限內的圖象交于點B(m,n),連結OB.若SAOB=6,SBOC=2.
(1)求一次函數(shù)的表達式;
(2)求反比例函數(shù)的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系中,點O坐標原點,直線l分別交x軸、y軸于A,B兩點,OA<OB,且OA、OB的長分別是一元二次方程的兩根.
(1)求直線AB的函數(shù)表達式;
(2)點P是y軸上的點,點Q第一象限內的點.若以A、B、P、Q為頂點的四邊形是菱形,請直接寫出Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

溫州享有“中國筆都”之稱,其產品暢銷全球,某制筆企業(yè)欲將n件產品運往A,B,C三地銷售,要求運往C地的件數(shù)是運往A地件數(shù)的2倍,各地的運費如圖所示.設安排x件產品運往A地.
(1)當n=200時,
①根據(jù)信息填表:

 
A地
B地
C地
合計
產品件數(shù)(件)
x
 
2x
200
運費(元)
30x
  
 
 
 
②若運往B地的件數(shù)不多于運往C地的件數(shù),總運費不超過4000元,則有哪幾種運輸方案?
(2)若總運費為5800元,求n的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

如圖,一個裝有進水管和出水管的容器,從某時刻開始的4分鐘內只進水不出水,在隨后的8分鐘內既進水又出水,接著關閉進水管直到容器內的水放完.假設每分鐘的進水量和出水量是兩個常數(shù),容器內的水量y(單位:升)與時間x(單位:分)之間的部分關系.那么,從關閉進水管起     分鐘該容器內的水恰好放完.

查看答案和解析>>

同步練習冊答案