已知:如圖,梯形ABCD是等腰梯形,AB∥CD,AD=BC,AC⊥BC,BE⊥AB交AC的延長(zhǎng)線于E,EF⊥AD交AD的延長(zhǎng)線于F,下列結(jié)論:①BD∥EF;②∠AEF=2∠BAC;③AD=DF;④AC=CE+EF. 其中正確的結(jié)論有( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
D
【解析】根據(jù)四邊形ABCD是等腰梯形,可得出的條件有:AC=BD,∠OAB=∠OBA=∠ODC=∠OCD(可通過(guò)全等三角形ABD和BAC得出),OA=OB,OC=OD,∠ACB=∠ADB=90°(三角形ACB和BDA全等).
①要證BD∥EF就要得出∠ADB=∠EFD,而∠ADB=90°,∠EFD=90°,因此∠ADB=∠EFD,此結(jié)論成立;
②由于BD∥EF,∠AEF=∠AOD,而∠AOD=∠OAB+∠OBA=2∠OAB,因此∠AEF=2∠OAB,此結(jié)論成立.
③在直角三角形ABE中,∠OAB=∠OBA,∠OAB+∠OEB=∠OBA+∠OBE=90°,因此可得出∠OEB=∠OBE,因此OA=OB=OE,那么O就是直角三角形ABE斜邊AE的中點(diǎn),由于OD∥EF,因此OD就是三角形AEF的中位線,那么D就是AF的中點(diǎn),因此此結(jié)論也成立.
④由③可知EF=2OD=2OC,而OA=OE=OC+CE.那么
AC=OA+OC=OC+OC+CE=2OC+CE=EF+CE,因此此結(jié)論也成立.故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
| ||
6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:中華題王 數(shù)學(xué) 九年級(jí)上 (北師大版) 北師大版 題型:047
已知:如圖,梯形AB-CD中,AB∠DC,E是BC的中點(diǎn),AE、DC的延長(zhǎng)線相交于點(diǎn)F,連結(jié)AC、BF.(1)求證:AB=CF;(2)四邊形ABFC是什么四邊形,并說(shuō)明你的理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com