(1)證明:∵四邊形ABCD是正方形,
∴∠B=∠C=90°,
∴∠BAE+∠BEA=90°,
∵EF⊥AE,
∴∠AEF=90°,
∴∠BEA+∠FEC=90°,
∴∠BAE=∠FEC,
∴△ABE∽△ECF;
(2)E是中點時,∠BAE=∠EAF,
理由如下:
連接AF,延長AE于DC的延長線相交于點H,
∵E為BC中點,
∴BE=CE,
∵AB∥DH,
∴∠B=∠ECH,
∵∠AEB=∠CEH,
∴△ABE≌△HCE,
∴AE=EH,
∵EF⊥AH,
∴△AFH是等腰三角形,
∴∠EAF=∠H,
∵AB∥DH,
∴∠H=∠BAE,
∴∠BAE=∠EAF,
∴當點E在BC中點位置時,∠BAE=∠EAF.
分析:(1)有正方形的性質(zhì)和已知條件證明∠BAE=∠FEC即可證明:△ABE∽△ECF;
(2)連接AF,延長AE于DC的延長線相交于點H,當點E在BC中點位置時,通過證明三角形全等和等腰三角形的性質(zhì)以及平行線的性質(zhì)即可證明∠BAE=∠EAF.
點評:本題考查了正方形的性質(zhì)、相似三角形的判斷和性質(zhì)以及等腰三角形的判斷和性質(zhì)的綜合運用,解答本題的關(guān)鍵是熟練掌握正方形的性質(zhì)和相似三角形的各種判斷方法,此題難度不大.