如圖,矩形ABCD中,E為DC的中點,AD: AB= :2,CP:BP=1:2,連接EP并延長,交AB的延長線于點F,AP、BE相交于點O.下列結論:①EP平分∠CEB;②△EBP∽△EFB;③△ABP∽△ECP;④AOAP=OB2.其中正確的序號是_______________.(把你認為正確的序號都填上)
①②③
解析試題分析:由條件設AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函數(shù)值可以求出∠EBC的度數(shù)和∠CEP的度數(shù),就可以求出∠CEP=∠BEP,運用勾股定理及三角函數(shù)值就可以求出就可以求出BF、EF的值,從而可以求出結論.
設AD=x,AB=2x,
∵四邊形ABCD是矩形,
∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB,
∴BC=x,CD=2x,
∵CP:BP=1:2,
∴CP=x,BP=x
∵E為DC的中點,
∴CE=CD=x,
∴∠CEP=30°,∠EBC=30°,
∴∠CEB=60°,
∴∠PEB=30°,
∴∠CEP=∠PEB,
∴EP平分∠CEB,故①正確;
∵DC∥AB,
∴∠CEP=∠F=30°,
∴∠F=∠EBP=30°,∠F=BEF=30°,
∴△EBP∽△EFB,
∴BE.BF=BP.EF.
∵∠F=BEF,
∴BE=BF,
∴BF2=PB•EF
∴△ABP∽△ECP
則正確的序號是①②③.
考點:矩形的性質,相似三角形的判定及性質,特殊角的正切值,勾股定理,直角三角形的性質
點評:本題綜合性強,難度較大,是中考常見題,學生需熟練掌握平面圖形的基本性質.
科目:初中數(shù)學 來源: 題型:
A、a≥
| ||
B、a≥b | ||
C、a≥
| ||
D、a≥2b |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com