(2008•江西)如圖,Rt△OAB的直角邊OA在y軸上,點B在第一象限內(nèi),OA=2,AB=1,若將△OAB繞點O按順時針方向旋轉(zhuǎn)90°,則點B的對應(yīng)點B′的坐標(biāo)是   
【答案】分析:根據(jù)旋轉(zhuǎn)的性質(zhì),旋轉(zhuǎn)不改變圖形的大小和形狀,準(zhǔn)確把握旋轉(zhuǎn)的方向和度數(shù).
解答:解:把Rt△OAB的繞點O按順時針方向旋轉(zhuǎn)90°,就是把它上面的各個點按順時針方向旋轉(zhuǎn)90度.點A在y軸上,且OA=2,正好旋轉(zhuǎn)到x軸正半軸.
則旋轉(zhuǎn)后A′點的坐標(biāo)是(2,0);又旋轉(zhuǎn)過程中圖形不變,OA=2,AB=1,故點B′坐標(biāo)為(2,-1).
點評:本題將一個圖形的旋轉(zhuǎn)放在坐標(biāo)系中來考查,是一道考查數(shù)與形結(jié)合的好試題,也為高中后續(xù)學(xué)習(xí)做了良好的鋪墊.從考試情況看,還有非常多考生沒完全理解旋轉(zhuǎn)的三大要素即中心、方向、角度,故失分的較多.本題綜合考查學(xué)生旋轉(zhuǎn)和坐標(biāo)知識.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2008•江西)如圖:在平面直角坐標(biāo)系中,有A(0,1),B(-1,0),C(1,0)三點坐標(biāo).
(1)若點D與A,B,C三點構(gòu)成平行四邊形,請寫出所有符合條件的點D的坐標(biāo);
(2)選擇(1)中符合條件的一點D,求直線BD的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年浙江省寧波市中考數(shù)學(xué)模擬試卷(三)(解析版) 題型:解答題

(2008•江西)如圖:在平面直角坐標(biāo)系中,有A(0,1),B(-1,0),C(1,0)三點坐標(biāo).
(1)若點D與A,B,C三點構(gòu)成平行四邊形,請寫出所有符合條件的點D的坐標(biāo);
(2)選擇(1)中符合條件的一點D,求直線BD的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年浙江省金華衢州地區(qū)十一校聯(lián)考中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2008•江西)如圖:在平面直角坐標(biāo)系中,有A(0,1),B(-1,0),C(1,0)三點坐標(biāo).
(1)若點D與A,B,C三點構(gòu)成平行四邊形,請寫出所有符合條件的點D的坐標(biāo);
(2)選擇(1)中符合條件的一點D,求直線BD的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年廣東省汕頭市澄海區(qū)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2008•江西)如圖:在平面直角坐標(biāo)系中,有A(0,1),B(-1,0),C(1,0)三點坐標(biāo).
(1)若點D與A,B,C三點構(gòu)成平行四邊形,請寫出所有符合條件的點D的坐標(biāo);
(2)選擇(1)中符合條件的一點D,求直線BD的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年北京市通州區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2008•江西)如圖:在平面直角坐標(biāo)系中,有A(0,1),B(-1,0),C(1,0)三點坐標(biāo).
(1)若點D與A,B,C三點構(gòu)成平行四邊形,請寫出所有符合條件的點D的坐標(biāo);
(2)選擇(1)中符合條件的一點D,求直線BD的解析式.

查看答案和解析>>

同步練習(xí)冊答案