(2008•菏澤)如圖所示,AB是⊙O的直徑,AD=DE,AE與BD交于點C,則圖中與∠BCE相等的角有( )

A.2個
B.3個
C.4個
D.5個
【答案】分析:首先與∠BCE相等的角有對頂角∠DCA.
由于AB是⊙O的直徑,可得∠ADB=90°;已知AD=DE,根據(jù)垂徑定理可知OD⊥AE;
根據(jù)等角余角相等,可得出∠DCA=∠ADO=∠DAO;
易證得△AOD≌△DOE,因此∠OAD=∠ODA=∠ODE=∠OED;
因此與∠BCE相等得角有5個:∠DCA、∠OAD、∠ODA、∠ODE、∠OED.
解答:解:∵AD=DE,AO=DO=OE,
∴△OAD≌△OED,
∴∠DAB=∠ADO=∠ODE=∠DEO;
∵AB是⊙O的直徑,
∴∠ADB=90°,∠AEB=90°,
∵AD=DE,∴∠ABD=∠DBE,
∴∠DAB=90°-∠ABD,∠BCE=90°-∠DBE,
∴∠DAB=∠BCE,
∴∠DCA=∠DAB=∠ADO=∠ODE=∠DEO,
則與∠ECB相等的角有5個.
故選D.
點評:此題主要考查同弧所對的圓周角相等,三角形外角的性質(zhì)等知識點的綜合運用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2009年云南省楚雄州雙柏縣中考數(shù)學模擬試卷(愛尼山中學 尹征才)(解析版) 題型:填空題

(2008•菏澤)如圖,已知AB∥CD,BE平分∠ABC,∠CDE=150°,則∠C=    度.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年天津市東麗區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2008•菏澤)如圖,AC是某市環(huán)城路的一段,AE,BF,CD都是南北方向的街道,其與環(huán)城路AC的交叉路口分別是A,B,C.經(jīng)測量花卉世界D位于點A的北偏東45°方向,點B的北偏東30°方向上,AB=2km,∠DAC=15°.
(1)求B,D之間的距離;
(2)求C,D之間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年山東省德州市中考數(shù)學試卷(解析版) 題型:填空題

(2008•菏澤)如圖,C為線段AE上一動點(不與點A,E重合),在AE同側(cè)分別作正三角形ABC和正三角形CDE,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連接PQ.以下五個結(jié)論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60度.
恒成立的結(jié)論有    .(把你認為正確的序號都填上)

查看答案和解析>>

科目:初中數(shù)學 來源:2008年山東省德州市中考數(shù)學試卷(解析版) 題型:填空題

(2008•菏澤)如圖,已知AB∥CD,BE平分∠ABC,∠CDE=150°,則∠C=    度.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年山東省濱州市中考數(shù)學試卷(解析版) 題型:填空題

(2008•菏澤)如圖,C為線段AE上一動點(不與點A,E重合),在AE同側(cè)分別作正三角形ABC和正三角形CDE,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連接PQ.以下五個結(jié)論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60度.
恒成立的結(jié)論有    .(把你認為正確的序號都填上)

查看答案和解析>>

同步練習冊答案