拋物線y=(x-3)(x+1)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,點(diǎn)D為頂點(diǎn).

(1)求點(diǎn)B及點(diǎn)D的坐標(biāo).
(2)連結(jié)BD,CD,拋物線的對(duì)稱軸與x軸交于點(diǎn)E.
①若線段BD上一點(diǎn)P,使∠DCP=∠BDE,求點(diǎn)P的坐標(biāo).
②若拋物線上一點(diǎn)M,作MN⊥CD,交直線CD于點(diǎn)N,使∠CMN=∠BDE,求點(diǎn)M的坐標(biāo).
(1)∵拋物線y=(x-3)(x+1)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),
∴當(dāng)y=0時(shí),(x-3)(x+1)=0,
解得x=3或-1,
∴點(diǎn)B的坐標(biāo)為(3,0).
∵y=(x-3)(x+1)=x2-2x-3=(x-1)2-4,
∴頂點(diǎn)D的坐標(biāo)為(1,-4);

(2)①如右圖.
∵拋物線y=(x-3)(x+1)=x2-2x-3與與y軸交于點(diǎn)C,
∴C點(diǎn)坐標(biāo)為(0,-3).
∵對(duì)稱軸為直線x=1,
∴點(diǎn)E的坐標(biāo)為(1,0).
連接BC,過點(diǎn)C作CH⊥DE于H,則H點(diǎn)坐標(biāo)為(1,-3),
∴CH=DH=1,
∴∠CDH=∠BCO=∠BCH=45°,
∴CD=
2
,CB=3
2
,△BCD為直角三角形.
分別延長PC、DC,與x軸相交于點(diǎn)Q,R.
∵∠BDE=∠DCP=∠QCR,
∠CDB=∠CDE+∠BDE=45°+∠DCP,
∠QCO=∠RCO+∠QCR=45°+∠DCP,
∴∠CDB=∠QCO,
∴△BCD△QOC,
OC
OQ
=
CD
CB
=
1
3
,
∴OQ=3OC=9,即Q(-9,0).
∴直線CQ的解析式為y=-
1
3
x-3,
直線BD的解析式為y=2x-6.
由方程組
y=-
1
3
x-3
y=2x-6
,解得
x=
9
7
y=-
24
7

∴點(diǎn)P的坐標(biāo)為(
9
7
,-
24
7
);

②(Ⅰ)當(dāng)點(diǎn)M在對(duì)稱軸右側(cè)時(shí).
若點(diǎn)N在射線CD上,如備用圖1,延長MN交y軸于點(diǎn)F,過點(diǎn)M作MG⊥y軸于點(diǎn)G.
∵∠CMN=∠BDE,∠CNM=∠BED=90°,
∴△MCN△DBE,
CN
MN
=
BE
DE
=
1
2
,
∴MN=2CN.
設(shè)CN=a,則MN=2a.
∵∠CDE=∠DCF=45°,
∴△CNF,△MGF均為等腰直角三角形,
∴NF=CN=a,CF=
2
a,
∴MF=MN+NF=3a,
∴MG=FG=
3
2
2
a,
∴CG=FG-FC=
2
2
a,
∴M(
3
2
2
a,-3+
2
2
a).
代入拋物線y=(x-3)(x+1),解得a=
7
2
9
,
∴M(
7
3
,-
20
9
);
若點(diǎn)N在射線DC上,如備用圖2,MN交y軸于點(diǎn)F,過點(diǎn)M作MG⊥y軸于點(diǎn)G.
∵∠CMN=∠BDE,∠CNM=∠BED=90°,
∴△MCN△DBE,
CN
MN
=
BE
DE
=
1
2

∴MN=2CN.
設(shè)CN=a,則MN=2a.
∵∠CDE=45°,
∴△CNF,△MGF均為等腰直角三角形,
∴NF=CN=a,CF=
2
a,
∴MF=MN-NF=a,
∴MG=FG=
2
2
a,
∴CG=FG+FC=
3
2
2
a,
∴M(
2
2
a,-3+
3
2
2
a).
代入拋物線y=(x-3)(x+1),解得a=5
2

∴M(5,12);
(Ⅱ)當(dāng)點(diǎn)M在對(duì)稱軸左側(cè)時(shí).
∵∠CMN=∠BDE<45°,
∴∠MCN>45°,
而拋物線左側(cè)任意一點(diǎn)K,都有∠KCN<45°,
∴點(diǎn)M不存在.
綜上可知,點(diǎn)M坐標(biāo)為(
7
3
,-
20
9
)或(5,12).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知如圖,對(duì)稱軸為直線x=4的拋物線y=ax2+2x與x軸相交于點(diǎn)B、O.
(1)求拋物線的解析式.
(2)連接AB,平移AB所在的直線,使其經(jīng)過原點(diǎn)O,得到直線l.點(diǎn)P是l上一動(dòng)點(diǎn),當(dāng)△PAB的周長最小時(shí),求點(diǎn)P的坐標(biāo).
(3)當(dāng)△PAB的周長最小時(shí),在直線AB的上方是否存在一點(diǎn)Q,使以A,B,Q為頂點(diǎn)的三角形與△POB相似?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,說明理由.(規(guī)定:點(diǎn)Q的對(duì)應(yīng)頂點(diǎn)不為點(diǎn)O)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=-
1
2
x2+bx+c的圖象經(jīng)過A(2,0),B(0,-6)兩點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)圖象的對(duì)稱軸與x軸交于點(diǎn)C,連接BA、BC,求△ABC的面積和周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=-x2+bx+c經(jīng)過點(diǎn)A(3,0),B(-1,0).
(1)求拋物線的解析式;
(2)求拋物線的頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+c經(jīng)過A(-1,0)、B(3,0)、C(0,3)三點(diǎn),直線l是拋物線的對(duì)稱軸.
(1)求拋物線的解析式和對(duì)稱軸;
(2)設(shè)點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),當(dāng)△PAC是以AC為斜邊的Rt△時(shí),求點(diǎn)P的坐標(biāo);
(3)在直線l上是否存在點(diǎn)M,使△MAC為等腰三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由;
(4)設(shè)過點(diǎn)A的直線與拋物線在第一象限的交點(diǎn)為N,當(dāng)△ACN的面積為
15
8
時(shí),求直線AN的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,有一個(gè)橫截面是拋物線的運(yùn)河,一次,運(yùn)河管理員將一根長6m的鋼管(AB)一端在運(yùn)河底部A點(diǎn),另一端露出水面并靠在運(yùn)河邊緣的B點(diǎn),發(fā)現(xiàn)鋼管4m浸沒在水中(AC=4米),露出水面部分的鋼管BC與水面部分的鋼管BC與水面成30°的夾角(鋼管與拋物線的橫截面在同一平面內(nèi))
(1)以水面所在直線為x軸,建立如圖所示的直角坐標(biāo)系,求該運(yùn)河橫截面的拋物線解析式;
(2)若有一艘貨船從當(dāng)中通過,已知貨船底部最寬處為12米,吃水深(即船底與水面的距離)為1米,此時(shí)貨船是否能安全通過該運(yùn)河?若能,請說明理由;若不能,則需上游開閘放水提高水位,當(dāng)水位上升多少米時(shí),貨船能順利通過運(yùn)河?(船與河床之間的縫隙忽略不計(jì))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知⊙P的半徑為2,圓心P在拋物線y=
1
2
x2-2上運(yùn)動(dòng),當(dāng)⊙P與x軸相切時(shí),圓心P的坐標(biāo)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知四邊形ABCD是等腰梯形,A、B在x軸上,D在y軸上,ABCD,AD=BC=
17
,AB=5,CD=3,拋物線y=-x2+bx+c過A、B兩點(diǎn).
(1)求b、c;
(2)設(shè)M是x軸上方拋物線上的一動(dòng)點(diǎn),它到x軸與y軸的距離之和為d,求d的最大值;
(3)當(dāng)(2)中M點(diǎn)運(yùn)動(dòng)到使d取最大值時(shí),此時(shí)記點(diǎn)M為N,設(shè)線段AC與y軸交于點(diǎn)E,F(xiàn)為線段EC上一動(dòng)點(diǎn),求F到N點(diǎn)與到y(tǒng)軸的距離之和的最小值,并求此時(shí)F點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在矩形ABCD中,AB=a,BC=b,
b
3
≤a≤3b
,AE=AH=CF=CG,則四邊形EFGH的面積的最大值是( 。
A.
1
16
(a+b)2
B.
1
8
(a+b)2
C.
1
4
(a+b)2
D.
1
2
(a+b)2

查看答案和解析>>

同步練習(xí)冊答案