(2010•無錫)如圖,AB是⊙O的直徑,點D在⊙O上,∠AOD=130°,BC∥OD交⊙O于C,則∠A=    度.
【答案】分析:已知∠AOD的度數(shù),即可求出其補角∠BOD的度數(shù);根據(jù)平行線的內(nèi)錯角相等,易求得∠B的度數(shù);由于AB是直徑,由圓周角定理知∠ACB是直角,則∠A、∠B互余,由此得解.
解答:解:∵∠AOD=130°,
∴∠BOD=50°;
∵BC∥OD,
∴∠B=∠BOD=50°;
∵AB是⊙O的直徑,
∴∠ACB=90°;
∴∠A=90°-∠B=40°.
點評:此題主要考查了平行線的性質(zhì)以及圓周角定理的應用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2011年云南省曲靖市麒麟?yún)^(qū)越州二中中考數(shù)學模擬試卷(解析版) 題型:解答題

(2010•無錫)如圖,矩形ABCD的頂點A、B的坐標分別為(-4,0)和(2,0),BC=.設(shè)直線AC與直線x=4交于點E.
(1)求以直線x=4為對稱軸,且過C與原點O的拋物線的函數(shù)關(guān)系式,并說明此拋物線一定過點E;
(2)設(shè)(1)中的拋物線與x軸的另一個交點為N,M是該拋物線上位于C、N之間的一動點,求△CMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《三角形》(11)(解析版) 題型:解答題

(2010•無錫)如圖,矩形ABCD的頂點A、B的坐標分別為(-4,0)和(2,0),BC=.設(shè)直線AC與直線x=4交于點E.
(1)求以直線x=4為對稱軸,且過C與原點O的拋物線的函數(shù)關(guān)系式,并說明此拋物線一定過點E;
(2)設(shè)(1)中的拋物線與x軸的另一個交點為N,M是該拋物線上位于C、N之間的一動點,求△CMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2010•無錫)如圖,矩形ABCD的頂點A、B的坐標分別為(-4,0)和(2,0),BC=.設(shè)直線AC與直線x=4交于點E.
(1)求以直線x=4為對稱軸,且過C與原點O的拋物線的函數(shù)關(guān)系式,并說明此拋物線一定過點E;
(2)設(shè)(1)中的拋物線與x軸的另一個交點為N,M是該拋物線上位于C、N之間的一動點,求△CMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年江蘇省無錫市中考數(shù)學試卷(解析版) 題型:解答題

(2010•無錫)如圖,矩形ABCD的頂點A、B的坐標分別為(-4,0)和(2,0),BC=.設(shè)直線AC與直線x=4交于點E.
(1)求以直線x=4為對稱軸,且過C與原點O的拋物線的函數(shù)關(guān)系式,并說明此拋物線一定過點E;
(2)設(shè)(1)中的拋物線與x軸的另一個交點為N,M是該拋物線上位于C、N之間的一動點,求△CMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年浙江省杭州市中考數(shù)學模擬試卷(32)(解析版) 題型:解答題

(2010•無錫)如圖1是一個三棱柱包裝盒,它的底面是邊長為10cm的正三角形,三個側(cè)面都是矩形.現(xiàn)將寬為15cm的彩色矩形紙帶AMCN裁剪成一個平行四邊形ABCD(如圖2),然后用這條平行四邊形紙帶按如圖3的方式把這個三棱柱包裝盒的側(cè)面進行包貼(要求包貼時沒有重疊部分),紙帶在側(cè)面纏繞三圈,正好將這個三棱柱包裝盒的側(cè)面全部包貼滿.
(1)請在圖2中,計算裁剪的角度∠BAD;
(2)計算按圖3方式包貼這個三棱柱包裝盒所需的矩形紙帶的長度.

查看答案和解析>>

同步練習冊答案