【題目】已知關于x的方程(k﹣1)x2﹣(k﹣1)x+ =0有兩個相等的實數(shù)根,求k的值.

【答案】解:∵關于x的方程(k﹣1)x2﹣(k﹣1)x+ =0有兩個相等的實數(shù)根, ∴△=0,
∴[﹣(k﹣1)]2﹣4(k﹣1)× =0,
整理得,k2﹣3k+2=0,
即(k﹣1)(k﹣2)=0,
解得:k=1(不符合一元二次方程定義,舍去)或k=2.
∴k=2.
【解析】根據(jù)根的判別式令△=0,建立關于k的方程,解方程即可.
【考點精析】解答此題的關鍵在于理解一元二次方程的定義的相關知識,掌握只有一個未知數(shù),并且未知數(shù)的項的最高系數(shù)為2的方程為一元二次方程,以及對求根公式的理解,了解根的判別式△=b2-4ac,這里可以分為3種情況:1、當△>0時,一元二次方程有2個不相等的實數(shù)根2、當△=0時,一元二次方程有2個相同的實數(shù)根3、當△<0時,一元二次方程沒有實數(shù)根.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知矩形ABCD,AB=6,BC=8,E,F(xiàn)分別是AB,BC的中點,AF與DE相交于I,與BD相交于H,則四邊形BEIH的面積為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知Rt△AOB的兩直角邊OA,OB分別在x軸,y軸的正半軸上(OA<OB),且OA,OB的長分別是一元二次方程x2﹣14x+48=0的兩個根,線段AB的垂直平分線CD交AB于點C,分別交x軸,y軸于點D,E.

(1)直接寫出點A、B的坐標:A , B;
(2)求線段AD的長;
(3)已知P是直線CD上一個動點,點Q是直線AB上一個動點,則在坐標平面內(nèi)是否存在點M,使得以點C、P、Q、M為頂點的四邊形是以5為邊長的正方形?若存在,直接寫出點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車從A地出發(fā),沿同一路線駛向B. 甲車先出發(fā)勻速駛向B地,40 min后,乙車出發(fā),勻速行駛一段時間后,在途中的貨站裝貨耗時半小時. 由于滿載貨物,為了行駛安全,速度減少了50 km/h,結(jié)果與甲車同時到達B. 甲乙兩車距A地的路程y(km)與乙車行駛時間x(h)之間的函數(shù)圖象如圖所示,則下列說法:①a=4.5;②甲的速度是60 km/h;③乙出發(fā)80 min追上甲;乙剛到達貨站時,甲距B180 km.其中正確的有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請你用學習一次函數(shù)時積累的經(jīng)驗和方法解決下列問題:

(1)在平面直角坐標系中,畫出函數(shù)y=|x|的圖象

列表填空:

x

-3

-2

-1

0

1

2

3

y

描點、連線,在圖所示的平面直角坐標系中畫出y=|x|的圖象;

(2)結(jié)合所畫函數(shù)圖象,寫出y=|x|的兩條不同類型的性質(zhì).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次尋寶人找到了如圖所示的兩個標志點A(2,3),B(4,1),A,B兩點到寶藏點的距離都是,則寶藏點的坐標是( 。

A. (1,0) B. (5,4) C. (1,0)或(5,4) D. (0,1)或(4,5)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,B,C,D的坐標分別是(1,7),(1,1),(4,1),(6,1),以C,D,E為頂點的三角形與△ABC相似,則點E的坐標不可能是(
A.(6,0)
B.(6,3)
C.(6,5)
D.(4,2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2017年3月全國兩會勝利召開,某學校就兩會期間出現(xiàn)頻率最高的熱詞:A.藍天保衛(wèi)戰(zhàn),B.不動產(chǎn)保護,C.經(jīng)濟增速,D.簡政放權(quán)等進行了抽樣調(diào)查,每個同學只能從中選擇一個“我最關注”的熱詞,如圖是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

(1)本次調(diào)查中,一共調(diào)查了名同學;
(2)條形統(tǒng)計圖中,m= , n=
(3)從該校學生中隨機抽取一個最關注熱詞D的學生的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙、丙三人之間相互傳球,球從一個人手中隨機傳到另外一個人手中,共傳球三次.
(1)若開始時球在甲手中,求經(jīng)過三次傳球后,球傳回到甲手中的概率是多少?
(2)若丙想使球經(jīng)過三次傳遞后,球落在自己手中的概率最大,丙會讓球開始時在誰手中?請說明理由.

查看答案和解析>>

同步練習冊答案