已知二次函數(shù)的圖象經(jīng)過點A(3,0),B(2,-3),C(0,-3).

(1)求此函數(shù)的解析式及圖象的對稱軸;
(2)點P從B點出發(fā)以每秒0.1個單位的速度沿線段BC向C點運動,點Q從O點出發(fā)以相同的速度沿線段OA向A點運動,其中一個動點到達端點時,另一個也隨之停止運動.設運動時間為t秒.
①當t為何值時,四邊形ABPQ為等腰梯形;
②設PQ與對稱軸的交點為M,過M點作x軸的平行線交AB于點N,設四邊形ANPQ的面積為S,求面積S關于時間t的函數(shù)解析式,并指出t的取值范圍;當t為何值時,S有最大值或最小值.

(1),所以對稱軸為x=1
(2)
①t=5秒時,四邊形ABPQ為等腰梯形
②當t=20秒時,面積S有最小值3解析:
解:(1)∵二次函數(shù)的圖象經(jīng)過點C(0,-3),
∴c =-3.
將點A(3,0),B(2,-3)代入

解得:a=1,b=-2.
.-------------------2分
配方得:,所以對稱軸為x=1.-------------------3分
(2) 由題意可知:BP= OQ=0.1t.

∵點B,點C的縱坐標相等,
∴BC∥OA.
過點B,點P作BD⊥OA,PE⊥OA,垂足分別為D,E.
要使四邊形ABPQ為等腰梯形,只需PQ=AB.
即QE=AD=1.
又QE=OE-OQ=(2-0.1t)-0.1t=2-0.2t,
∴2-0.2t=1.
解得t=5.
即t=5秒時,四邊形ABPQ為等腰梯形.-------------------6分
②設對稱軸與BC,x軸的交點分別為F,G.
∵對稱軸x=1是線段BC的垂直平分線,
∴BF=CF=OG=1.
又∵BP=OQ,
∴PF=QG.
又∵∠PMF=∠QMG,
∴△MFP≌△MGQ.
∴MF=MG.
∴點M為FG的中點     -------------------8分
∴S=,
=
=

∴S=.-------------------10分
又BC=2,OA=3,
∴點P運動到點C時停止運動,需要20秒.
∴0<t≤20.
∴當t=20秒時,面積S有最小值3.------------------11分
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)的圖象經(jīng)(0,0),(1,2),(-1,-4)三點,那么這個二次函數(shù)的解析式是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)y=ax2-(a+1)x-4(a為常數(shù))
(1)已知二次函數(shù)y=ax2-(a+1)x-4的圖象的頂點在y軸上,求a的值;
(2)經(jīng)探究發(fā)現(xiàn)無論a取何值,二次函數(shù)的圖象一定經(jīng)過平面直角坐標系內(nèi)的兩個定點.請求出這兩個定點的坐標;
(3)已知關于x的一元二次方程ax2-(a+1)x-4=0的一個根在-1和0之間(不含-1和0),另一個根在2和3之間(不含2和3),試求整數(shù)a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

已知二次函數(shù)的圖象經(jīng)(0,0),(1,2),(-1,-4)三點,那么這個二次函數(shù)的解析式是________.

查看答案和解析>>

科目:初中數(shù)學 來源:2001年全國中考數(shù)學試題匯編《二次函數(shù)》(01)(解析版) 題型:填空題

(2001•寧夏)已知二次函數(shù)的圖象經(jīng)(0,0),(1,2),(-1,-4)三點,那么這個二次函數(shù)的解析式是   

查看答案和解析>>

科目:初中數(shù)學 來源:2001年寧夏中考數(shù)學試卷(解析版) 題型:填空題

(2001•寧夏)已知二次函數(shù)的圖象經(jīng)(0,0),(1,2),(-1,-4)三點,那么這個二次函數(shù)的解析式是   

查看答案和解析>>

同步練習冊答案